首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 107 cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov.  相似文献   

2.
Culture-based and culture-independent methods were used to explore the diversity of phototrophic purple bacteria in Soap Lake, a small meromictic soda lake in the western USA. Among soda lakes, Soap Lake is unusual because it consists of distinct upper and lower water bodies of vastly different salinities, and its deep waters contain up to 175 mM sulfide. From Soap Lake water new alkaliphilic purple sulfur bacteria of the families Chromatiaceae and Ectothiorhodospiraceae were cultured, and one purple non-sulfur bacterium was isolated. Comparative sequence analysis of pufM, a gene that encodes a key photosynthetic reaction centre protein universally found in purple bacteria, was used to measure the diversity of purple bacteria in Soap Lake. Denaturing gradient gel electrophoresis and subsequent phylogenetic analyses of pufMs amplified from Soap Lake water revealed that a significant diversity of purple bacteria inhabit this soda lake. Although close relatives of several of the pufM phylotypes obtained from cultured species could also be detected in Soap Lake water, several other more divergent pufM phylotypes were also detected. It is possible that Soap Lake purple bacteria are major contributors of organic matter into the ecosystem of this lake, especially in its extensive anoxic and sulfidic deep waters.  相似文献   

3.
The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites.  相似文献   

4.
Protists play a crucial role for ecosystem function(ing) and oxygen is one of the strongest barriers against their local dispersal. However, protistan diversity in freshwater habitats with oxygen gradients received very little attention. We applied high‐throughput sequencing of the V9 region (18S rRNA gene) to provide a hitherto unique spatiotemporal analysis of protistan diversity along the oxygen gradient of a freshwater meromictic lake (Lake Alatsee, SW Germany). In the mixolimnion, the communities experienced most seasonal structural changes, with Stramenopiles dominating in autumn and Dinoflagellata in summer. The suboxic interface supported the highest diversity, but only 23 OTUs95% (mainly Euglenozoa, after quality check and removal of operational taxonomic units (OTUs) with less than three sequences) were exclusively associated with this habitat. Eukaryotic communities in the anoxic monimolimnion showed the most stable seasonal pattern, with Chrysophyta and Bicosoecida being the dominant taxa. Our data pinpoint to the ecological role of the interface as a short‐term ‘meeting point’ for protists, contributing to the coupling of the mixolimnion and the monimolimnion. Our analyses of divergent genetic diversity suggest a high degree of previously undescribed OTUs. Future research will have to reveal if this result actually points to a high number of undescribed species in such freshwater habitats.  相似文献   

5.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

6.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   

7.
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to ~3.4 μM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 μM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 × 107 cells ml?1). Incubation experiments with 15N‐nitrite revealed nitrogen loss occurring in the chemocline through denitrification (~3 nM N h?1). At the same depth, incubations experiments with 15N2‐ and 13CDIC‐labelled bicarbonate, indicated substantial N2 fixation (31.7–42.1 pM h?1) and inorganic carbon assimilation (40–85 nM h?1). Catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N2 fixers, with the highest expression levels right at the chemocline. The majority of N2 fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization‐Secondary Ion Mass Spectroscopy (HISH‐SIMS), we could for the first time directly link Chlorobium to N2 fixation in the environment. Moreover, our results show that N2 fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.  相似文献   

8.
Matthews  R.  Hilles  M.  Pelletier  G. 《Hydrobiologia》2002,468(1-3):107-121
We evaluated an eleven year data set to assess trophic state and nutrient limitation in Lake Whatcom, an oligotrophic, soft water, chain lake located in the Puget Sound lowlands of Washington (U.S.A.). Although total phosphorus (TP) and soluble reactive phosphate (SRP) concentrations were relatively low throughout the lake, there were significant differences between the northern basin (Site 1) and the other sampling sites (Sites 2–4). Nonparametric correlation coefficients (Kendall's ) were highest between chlorophyll (CHL), Secchi depth (SD), total nitrogen (TN), and dissolved inorganic nitrogen (DIN). Late summer algal biomass correlated best with DIN and TP. Trophic State Indices based on TP, TN, CHL and SD revealed that although algal growth was most likely phosphorus limited throughout the year, the northern basin of the lake may have developed nitrogen co-limitation during late summer and fall. During this period, N/P ratios were often less than 20, and in 1998 the epilimnetic DIN concentrations dropped below 20 g l–1 while DIN/TP ratios fell below 4. Reviews of the literature suggest that while co-limitation by phosphorus and nitrogen is fairly common in unproductive lakes, the patterns seen in Lake Whatcom were more similar to those reported for eutrophic lakes experiencing secondary nitrogen limitation resulting from excess phosphorus loading.  相似文献   

9.
Numerous (0.5 to 4.8 × 105 cells/ml), small phytoplankton (smaller than 0.5–1 × 1–2 μm in cell size, picophytoplankton) were distributed in the halocline (depth 2–12 m, 4–14 practical salinity units) of the saline meromictic lake, Lake Suigetsu (35°35′ N, 135°52′ E), located in the central part of the coast of Wakasa Bay along the Japan Sea in Fukui Prefecture, Japan. Vertical distribution of phytoplankton revealed that the maximum number of picophytoplankton was always observed near or a little deeper than the oxic-anoxic boundary layer (depth 5–6 m); they were dominant phytoplankton in the water layer deeper than the oxic-anoxic boundary from July to late September 2005. Spectral analysis of autofluorescence emitted from the particle fractions smaller than 5 μm measured with a spectrofluorometer and from individual cells measured with a microscope photodiode array detector revealed that the major component of picophytoplankton was phycoerythrin-rich, unicellular cyanobacteria (picocyanobacteria). Eukaryotic phytoplankton about 2.5 μm in diameter were also found, but the numbers were low. Fluorescence intensity of chlorophyll a at 685 nm (room temperature) emitted from the particle fractions smaller than 5 μm was increased by the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These observations indicated that at least some picophytoplankton had a functional photosystem II in the halocline where sulfide, the potential inhibitor of oxygenic photosynthesis, was always present. The large abundance together with their physiological potency suggest that picophytoplankton are one of the important primary producers in the halocline of Lake Suigetsu. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
We analyzed the variation with depth in the composition of members of the domain Bacteria in samples from alkaline, hypersaline, and currently meromictic Mono Lake in California. DNA samples were collected from the mixolimnion (2 m), the base of the oxycline (17.5 m), the upper chemocline (23 m), and the monimolimnion (35 m). Composition was assessed by sequencing randomly selected cloned fragments of 16S rRNA genes retrieved from the DNA samples. Most of the 212 sequences retrieved from the samples fell into five major lineages of the domain BACTERIA: alpha- and gamma-Proteobacteria (6 and 10%, respectively), Cytophaga-Flexibacter-Bacteroides (19%), high-G+C-content gram-positive organisms (Actinobacteria; 25%), and low-G+C-content gram-positive organisms (Bacillus and Clostridium; 19%). Twelve percent were identified as chloroplasts. The remaining 9% represented beta- and delta-Proteobacteria, Verrucomicrobiales, and candidate divisions. Mixolimnion and oxycline samples had low microbial diversity, with only 9 and 12 distinct phylotypes, respectively, whereas chemocline and monimolimnion samples were more diverse, containing 27 and 25 phylotypes, respectively. The compositions of microbial assemblages from the mixolimnion and oxycline were not significantly different from each other (P = 0.314 and 0.877), but they were significantly different from those of chemocline and monimolimnion assemblages (P < 0.001), and the compositions of chemocline and monimolimnion assemblages were not significantly different from each other (P = 0.006 and 0.124). The populations of sequences retrieved from the mixolimnion and oxycline samples were dominated by sequences related to high-G+C-content gram-positive bacteria (49 and 63%, respectively) distributed in only three distinct phylotypes, while the population of sequences retrieved from the monimolimnion sample was dominated (52%) by sequences related to low-G+C-content gram-positive bacteria distributed in 12 distinct phylotypes. Twelve and 28% of the sequences retrieved from the chemocline sample were also found in the mixolimnion and monimolimnion samples, respectively. None of the sequences retrieved from the monimolimnion sample were found in the mixolimnion or oxycline samples. Elevated diversity in anoxic bottom water samples relative to oxic surface water samples suggests a greater opportunity for niche differentiation in bottom versus surface waters of this lake.  相似文献   

11.
Quantitative zooplankton sampling was carried out biweekly during 16 months in Lake Nyahirya, a Western Uganda crater lake. Six out of 24 rotifer species recorded from the lake were quantitatively important (Horaella brehmi, Brachionus angularis, B. caudatus, Keratella tropica, Filinia longiseta and F. opoliensis, and three others were common (Brachionus falcatus, Asplanchna sieboldi and Conochiloides natans). Rotifer peaks were correlated with rainy periods and relatively clear water, which coincide with the European spring and autumn. All species were able to deal with hypoxic conditions. A clear niche separation can be observed between different genera and between species of the same genus. The population dynamics of the rotifers seem to be ruled by repeated irregular environmental fluctuations. Rainfall appears to be a primary steering factor.  相似文献   

12.
Euryhaline halophiles grow over a wide range of salinity, from <3% NaCl (seawater equivalent) to >15% NaCl and even saturation level (about 30% NaCl). Several species of euryhaline halophiles occur worldwide, especially in marine environments and also in aquatic and terrestrial habitats of the Antarctic ice-free areas. A biogeographic view of Antarctic halophiles is that their migration among lakes on land is more difficult than in marine setting. Ponds and lakes on land may thus serve as “islands” which facilitate the selection and separation of unique species. We isolated euryhaline halophiles from the saline lake, Suribati Ike, near Syowa Station and placed them into seven groups, each demonstrating a clear depth-related distribution. Six of the seven groups probably represent new species of the genera Halomonas and Marinobacter. This result suggests that Antarctic saline lakes exhibit high selectivity of unique euryhaline halophiles and possibly of other microbial groups.  相似文献   

13.
14.
We investigated the distribution of chloropigments in a small meromictic lake, Lake Kaiike, south-west Japan. In the water-column, concentrations of Chl a related to cyanobacteria, BChl a related to purple sulphur bacteria, and three types of BChl e homologues (BChls e1, e2 and e3) related to brown-coloured green sulphur bacteria, were maximal at the redox boundary. Below the redox boundary, absolute concentrations of Chl a and BChl a gradually decreased with depth, whereas BChls e remained rather constant. Suspended particulate matter (SPM) at the deeper region of the anoxic water-column was enriched in highly alkylated BChl e homologues compared with SPM at the redox boundary. The shift in the relative content of highly alkylated BChl e homologues beneath the boundary was associated with community related adaptation of brown-coloured green sulphur bacteria to changes in light quality/quantity, resulting from the optical absorption and reflectance of SPMs in the overlying water-column. Benthic microbial mats were characterized by high abundances of BChls e, in which highly alkylated homologues were substantially abundant. This suggests that the BChls e in the microbial mat may be derived from the low-light adapted brown-coloured green sulphur bacteria forming the bacterial mat.  相似文献   

15.
The increase in human development in the downstream portion of the Pyramid Lake drainage basin has resulted in increased nutrient loading to the lake. Since this is a deep, terminal lake, concern over nutrient build up and change in trophic status exists. On the basis of lake chemistry which shows consistently high concentrations of total reactive-P (mean = 55 µg P l–1) relative to dissolved inorganic-N (DIN) (mean = 15 µg N 1–1), it has been hypothesized that Pyramid is N-limited. However, no systematic study of nutrient limitation had been undertaken. Nutrient enrichment bioassays conducted throughout an entire year clearly showed that additions of DIN resulted in a 350–600% stimulation of chlorophyll production. Phosphate, when added singly or in combination with DIN, had no effect. This positive response to N-addition was significant at all times of the year except, (1) immediately after complete lake mixing in February when a large pool of hypolimnetic nitrate was injected into the euphotic zone, and (2) during a fall bloom of the nitrogen fixing species Nodularia spumigena. The positive response to N-addition in the bioassay experiments was strong between March and November. However, the seston exhibited only a gradual depletion of nitrogen relative to carbon over this same period. PN:PC ratios suggested no N-deficiency in phytoplankton biomass in February, March and April, moderate N-deficiency in May, June and July and, severe N-deficiency from August until winter turnover. The appearance of nitrogen fixing blue-green algae in September supports the hypothesis of N-limitation in the summer-autumn. In evaluating the nutrient status of a lake, the concepts of nutrient stimulation versus nutrient deficiency versus nutrient limitation must clearly be defined.This paper is dedicated to G. Evelyn Hutchinson who first visited Pyramid Lake in 1933.  相似文献   

16.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

17.
Lake Chilwa, a fairly large, turbid, brackish and very shallow endorheic lake in Malawi, Central Africa, dried up completely in 1968 and filled up again in the following wet season. Compared with the zooplankton in the drying, filling and post-filling phases (1966–1971), differences in their composition, density, distribution and reproduction were found in 1975–1976, a year when the lake was 1–2 metres deeper. This situation is discussed in relation to environmental factors, fish predation and the supply of detritus from the surrounding Typha swamp, to illustrate the relative stability of the zooplankton populations in periods between lake recessions.University of Malawi  相似文献   

18.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

19.
Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention. Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.  相似文献   

20.
Dag Hongve 《Hydrobiologia》1994,277(1):17-39
The dynamics of seston and dissolved elements in a meromictic lake with high concentrations of manganese and iron in the monimolimnion were studied through an annual cycle. This publication presents results for assimilation, sedimentation and recovery of nutrients (C, N, P, and Si) in the trophogenic zone. Phosphorus deficiency kept the productivity of the diatom dominated phytoplankton at an oligotrophic level. High concentrations of iron in influent streams and redistribution followed by precipitation of iron during periods of partial turnover removed phosphorus from the water. High concentrations of manganese and sulfate did not have the anticipated fertilizing effect, and recovery of nutrients from the depth of the lake was negligible. Mass balance calculations indicate that liberation of phosphorus from the sediments in the trophogenic zone was most important for the maintenance of primary production. 75% of carbon, 80% of nitrogen and 25% of phosphorus assimilated by the phytoplankton was mineralized in the trophogenic zone. Silica was effectively regenerated from the littoral zone during the decline of diatom blooms. Nitrogen and silica retention was 45% of the external load compared to 66% for phosphorus.Dept. of Limnology University of Oslo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号