首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of several enzymes have been studied during sporulation of Saccharomyces cerevisia. The specific activities of ribonuclease and aminopeptidase I raised several-fold after transfer of the cells to sporulation medium, whereas the specific activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, tryptophan synthase and pyruvate decarboxylase were not significantly altered. The specific activities of NAD-dependent glutamate dehydrogenase, isocitrate lyase, malate dehydrogenase and fructose bisphosphatase all decreased from the onset of sporulation. The inactivation of these latter enzymes was inhibited by cycloheximide and by inhibitors of energy metabolism. Hexokinase, alcohol dehydrogenase and glutamate oxaloacetate transaminase were partially lost from the cells during the period of ascus maturation. None of the enzyme changes observed proved to be 'sporulation-specific' in that it occurred exclusively in sporulating diploid yeast cells. Therefore it is postulated that the meiotic events and the metabolic changes required for ascospore formation are under separate genetic control in this organism. During sporulation, the cellular content of cytochromes b, c, and aa3 was reduced to 20% or less of that present in vegetative derepressed cells. Since the relative percentage of total to cycloheximide-insensitive mitochondrial protein synthesis was not significantly altered throughout sporulation, and the pattern of mitochondrially synthesized polypeptides was rather similar both in vegetative and in sporulating cells, it appeared that not only degradation but also synthesis and therefore turnover of the mitochondrially coded polypeptides of cytochromes b and aa3 took place during sporulation. The activity ratio of cytochrome c oxidase to F1-ATPase in submitochondrial particles isolated from vegetative cells and from purified asci was almost identical. This indicates that the loss of membrane-bound mitochondrial cytochromes during sporulation is probably due to a nonselective degradation of inner mitochondrial membrane proteins.  相似文献   

2.
1. Spectrophotometric analysis of intact cells of Schizosaccharomyces pombe, harvested from exponentially growing cultures during the phase of glucose repression, revealed the presence of cytochromes a+a(3), c and at least two species of cytochrome b. 2. An absorption maximum at 554nm at 77 degrees K, previously attributed to cytochrome c(1), has been identified as a b-type cytochrome. 3. CO-difference spectra reveal the presence of cytochromes P-420 and P-450 in addition to cytochrome a(3). 4. The cell cycle was analysed by separation of cells into classes representing successive stages in the cell cycle by isopycnic zonal centrifugation. 5. Cytochromes c(548), b(554) and b(560) each exhibited a single broad maximum of synthesis during the cell cycle. 6. Amounts of cytochromes a+a(3) and b(563) (tentatively identified as cytochrome b(T) by its reaction on pulsing anaerobic cell suspensions with O(2)) oscillated in phase, and showed two maxima during the cycle; the second maximum of cytochromes a+a(3) was coincident with a maximum of activity of enzymically active cytochrome c oxidase. 7. The amount of cytochrome P-420 decreased during the first three-quarters of the cell-cycle, whereas that of cytochrome P-450 increased during this period. 8. The discrepancy between spectrophotometric and enzymic assay of cytochrome c oxidase, the changing ratio of cytochrome a(3)/cytochrome a and the relationship between changes in cellular content of cytochromes and previous observations on respiratory oscillations during the cell cycle are discussed.  相似文献   

3.
The mechanism of tumor necrosis factor alpha (TNFalpha)-induced cytotoxicity in metabolically inhibited cells is unclear, although some studies have suggested that mitochondrial dysfunction and generation of reactive oxygen species may be involved. Here we studied the effect of TNFalpha on the redox state of mitochondrial cytochromes and its involvement in the generation of reactive oxygen species in metabolically inhibited L929 cells. Treatment with TNFalpha and cycloheximide (TNFalpha/CHX) induced mitochondrial cytochrome c release, increased the steady-state reduction of cytochrome b, and decreased the steady-state reduction of cytochromes cc(1) and aa(3). TNFalpha/CHX treatment also induced lipid peroxidation, intracellular generation of reactive oxygen species, and cell death. Furthermore, as the cells died mitochondrial morphology changed from an orthodox to a hyperdense and condensed and finally to a swollen conformation. Antimycin A, a mitochondrial respiratory chain complex III inhibitor that binds to cytochrome b, blocked the formation of reactive oxygen species, suggesting that the free radicals are generated at the level of cytochrome b. Moreover, antimycin A, when added after 3 h of TNFalpha/CHX treatment, arrested the further release of cytochrome c and the cytotoxic response. We propose that the reduced cytochrome b promotes the formation of reactive oxygen species, lipid peroxidation of the cell membrane, and cell death.  相似文献   

4.
Phospholipid concentrations have been examined throughout successive cell cycles in synchronously growing cultures of the yeast, Saccharomyces cerevisiae. Total phospholipid phosphorus, as well as lecithin and phosphatidylethanolamine levels, exhibited stepwise increases during the cell cycle with step increments beginning just prior to new rounds of bud formation. Phosphatidylinositol and phosphatidylserine levels, on the other hand, showed what have been interpreted to be peak concentrations near the time of bud formation. Cardiolipin content varied considerably and was dependent upon the carbon source of the growth medium. Glucose-grown cells exhibited peak concentrations of cardiolipin near the time of bud formation, with marked decreases after this time. In contrast, galactose-grown synchronous cells exhibited stepwise increments in cardiolipin content, with step increases occurring near the time of new rounds of bud formation. Step or peak increases in cardiolipin, as well as all other phospholipids, were found to coincide with the time of stepwise increases in cytochrome c oxidase activity in these cells. No correlations were observed between the elaboration of mitochondrial membranes during the synchronous cell cycle and the observed patterns of phospholipid increase.  相似文献   

5.
Titration of Trypanosoma cruzi respiration with cyanide, with results treated as Dixon plots, indicated the presence of several terminal oxidases. The inhibitions obtained at low cyanide concentrations (0-300 microM), taken together with cyanide effects on cytochrome aa3-deficient, dyskinetoplastic epimastigotes, supported cytochrome aa3 as T. cruzi main terminal oxidase. By increasing cyanide concentration to 1.0 mM, two alternative terminal oxidases could be detected. One of these was active in both kinetoplastic and dyskinetoplastic (cytochrome aa3-deficient) epimastigotes, and azide- and antimycin-insensitive. Complementary cytochrome studies with intact epimastigotes and mitochondrial membranes revealed the presence of cytochromes aa3, b, c558, o and possibly d, as components of the parasite electron transport system. Fractionation studies demonstrated that both o and d were bound to the mitochondrial membrane. Reduction by endogenous substrates and complex formation with cyanide supported cytochrome o as alternative terminal oxidase. EB-cultured, dyskinetoplastic epimastigotes showed the same respiration rate as the kinetoplastic cells, despite the significant decrease of cytochrome aa3, thus indicating adaptive mechanisms that determine the expression of alternative oxidases, whenever the main terminal activity is depressed.  相似文献   

6.
The effects of aeration on the growth and cytochrome patterns of thermophilic bacterium PS3 were studied; bacteria grown with strong aeration synthesized cytochromes c, b, and aa3, while those grown with low aeration, showing non-exponential growth, synthesized higher amounts of cytochromes c and b including o, and a lower amount of cytochrome a (a3). The CO-difference spectra indicated that the terminal oxidase was cytochrome aa3 for high aeration conditions and the cytochrome o for low aeration conditions. Cytochrome o can be solubilized by Triton X-100 from the membrane fraction of bacteria grown under oxygen-limited conditions. The carbon monoxide complex of cytochrome o, obtained by exposing this extract to CO, was photolyzed and the subsequent rebinding of CO was analyzed; it followed first order kinetics with a rate constant of around 8 s-1 at 25 degrees C. At liquid nitrogen temperature, CO-rebinding did not occur. The CO-difference spectrum of purified cytochrome oxidase sample from the bacteria grown with strong aeration (Sone, N., et al. (1979) FEBS Lett. 106, 39-42) revealed the presence of a small amount of a cytochrome o-like pigment besides cytochrome aa3. Analysis of the CO complexes of these chromophores showed rate constants of 29-30 s-1 for cytochrome aa3 and 35-42 s-1 for the o-like pigment, indicating that the cytochrome o-like pigment contaminating the purified cytochrome oxidase preparation was not typical cytochrome o.  相似文献   

7.
This study investigated mitochondrial respiratory activity in Huntington's disease (HD) brain. Mitochondrial membranes from caudate and cortex of HD and non-HD autopsied brains were assayed for succinate oxidation, cytochrome oxidase activity, and cytochromes b, cc1, and aa3. There was a significant decrease in HD caudate mitochondrial respiration, cytochrome oxidase activity, and cytochrome aa3, whereas cytochromes b and cc1 were normal. These findings are consistent with the hypothesis that mitochondrial dysfunction may contribute to the localized hypometabolism and progressive atrophy of the HD caudate.  相似文献   

8.
After synthesis during the early log phase, the concentrations of ubiquinone and cytochromes did not vary during the growth cycle of Azotobacter vinelandii, when grown with either high or low aeration on nitrogen-free or urea-containing media. The level of aeration had no effect on the concentrations of the electron carriers synthesized, but affected the growth rate. On urea-containing medium, the concentration of cytochrome a(2) was low, but it was synthesized at a linear rate when the bacteria were transferred to nitrogen-free medium. A. vinelandii was shown to utilize sufficient medium urea to account for all of the cell nitrogen. Growth on urea-containing medium with an oxygen atmosphere resulted in low growth yields, and cytochromes c(4) + c(5) were not synthesized; the concentrations of ubiquinone and cytochromes b(1), a(1), and a(2) were only 12 to 18% of the values for growth on nitrogen-free medium with high aeration.  相似文献   

9.
The mitochondrial cytochrome aa3 and b deficiencies of the [poky] cytoplasmic mutant of Neurospora crassa are partially suppressed by mutant alleles of any one of six nuclear genes, namely sup-1, sup-3, sup-4, sup-5, sup-10 and sup-14. The suppressor-induced increases in the concentration of both cytochromes are detected in the mitochondria from exponentially growing [poky] cultures, and, thus, are clearly distinguishable from the age-dependent changes in the cytochrome system that occur in cultures that approach, or have reached, the stationary phase of growth. The relative amounts of mitochondrial cytochromes aa3 and b show a direct correlation with the relative efficiency of the various sup genes as suppressors of the slow-growth phenotype of [poky]. Since [poky] is defective in mitochondrial protein synthesis due to a lack of 30 S mitochondrial ribosomal subunits, it is proposed that the six suppressors promote the assembly of functional mitochondrial ribosomes.  相似文献   

10.
It is well established that the mitochondrial and the microsomal cytochromes in Saccharomyces cerevisiae are regulated differently. Mutations affecting the mitochondrial cytochromes aa3 or c had no effect on the concentration of the microsomal cytochrome P450 even during haem limitation. Moreover, a defect in the cytochrome P450 gene did not affect mitochondrial cytochromes. However, a regulatory mutation present in strain SG1 decreased both mitochondrial and microsomal cytochrome contents. This mutation also affected the intracellular haem concentration. The haem precursor 5-aminolaevulinate increased both mitochondrial and microsomal cytochrome contents. Our results indicate that carbon source and haem concentration are involved in the regulation of cytochrome P450.  相似文献   

11.
Fungi are capable of potentially unlimited growth. We resolved nuclear types from multinuclear mycelium of a phenotypically normal wild isolate of the fungus Neurospora intermedia by plating its uninucleate microconidia and obtained a strain which, unlike the "parent" strain, exhibited clonal senescence in subcultures. The mutant gene, senescent, was introgressed into N. crassa and mapped four map units to the right of the his-1 locus on linkage group VR. senescent is the first nuclear gene mutant of Neurospora derived from nature that shows the death phenotype. Death of the sen mutant occurred faster at 34 degrees C than at 22 or 26 degrees C. Measurements of oxygen uptake of conidia using respiratory inhibitors and the spectrophotometric analyses of mitochondrial cytochromes showed that in sen cultures grown at 34 degrees C, cytochromes b and aa(3) were present but cytochrome c was absent. By contrast at 26 degrees C, cytochromes b and c were present but cytochrome aa(3) was diminished in the late subcultures. This suggested that the sen mutation does not affect the potential to produce functional cytochromes. The deficiency of the respiratory chain cytochromes may not be the cause of death of the sen mutant because the cytochrome c and aa(3) mutants of N. crassa are capable of sustained growth whereas sen is not. Possible explanations for the observations are discussed.  相似文献   

12.
The 18 extranuclear mutants of Neurospora crassa, without exception, have abnormal mitochondrial respiratory systems. On the basis of genetic, phenotypic and physiological criteria, these mutants are divided into four groups: 1) the cytochrome aa3 and b deficient "poky" variants that are defective in mitochondrial ribosomes assembly, 2) the cytochrome aa3 deficient mutants, [mi-3] and [exn-5], that appear to have genetic lesions affecting a component of a regulatory system controlling cytochrome aa3 synthesis, 3) the cytochrome aa3 and b deficient "stopper" mutants with physiological lesions that probably affect mitochondrial protein synthesis, and 4) cni-3, a mutant that is constitutive for an inducible mitochondrial cyanide-insensitive oxidase in spite of having a normal cytochrome mediated electron-transport system. It is proposed that the mitochondrial genophore not only codes for cellular components that are essential for the formation of the mitochondrial protein synthesizing apparatus, but also for components of a regulatory system that coordinates the expression of nuclear and mitochondrial genes during the biogenesis of the mitochondrial electorn-transport system.  相似文献   

13.
1. The activity of enzymes characteristic of microsomes (NADPH-cytochrome c reductase and uridine diphosphatase) and of inner mitochondrial membranes (cytochrome c oxidase and succinate-cytochrome c reductase) increases during the cell cycle of P815Y neoplastic mast cells in concert with total protein. The activity of glutamate dehydrogenase, an enzyme of the mitochondrial matrix, increases in a somewhat different manner. 2. The specific activity of mitochondrial structures involved in energy-coupling measured with a fluorescent probe remains constant during the cell cycle. 3. Mitochondrial and microsomal protein increases during the cycle at the same time as total protein; nuclear protein increases rather more sharply. 4. The rate of incorporation of labelled choline or inositol into nuclear, mitochondrial or microsomal phospholipid during the cell cycle follows the rate of incorporation into total phospholipid. 5. It is concluded that the major components of cellular membranes are synthesized, like total protein or phospholipid, throughout most of the intermitotic period.  相似文献   

14.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied. 2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the alpha peaks of b-type cytochrome (s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two alpha peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochdrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm. 3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.  相似文献   

15.
Cytochrome oxidation-reduction responses to two mitochondrial electron transport inhibitors, carbon monoxide (CO) and cyanide (CN), were studied in the intact brains of fluorocarbon-circulated rats. In vivo reflectance spectrophotometry indicated that cortical b-type cytochromes (564 nm) were highly resistant to reduction by CN in the presence of O2 but showed reduction responses to the administration of 1-5% CO in 90% O2. In contrast, cyanide-sensitive cytochromes aa3 (605 nm) and c + c1 (551 nm) did not increase their reduction levels during exposure to 5% CO in 90% O2. The in vivo CO-mediated b-cytochrome reduction responses did not occur after pretreatment with the cytochrome b inhibitor, antimycin A. Transmission spectrophotometry of superfused hemoglobin-free rat brain slices confirmed cortical b-type cytochromes to be CN-resistant in the presence of O2. Another cytochrome absorbing at 445 nm also was resistant to reduction by 1-mM cyanide in vitro, but it could be reduced anaerobically. The reduced 445-nm cytochrome bound CO in the presence of cyanide. We postulate that this CN-resistant CO binding component might account for in vivo cytochrome aa3-CO interactions and directly or indirectly modulate cytochrome b reduction responses to CO. In any event, the spectral data indicate different primary tissue target sites for CO and CN in living rat brain and also suggest different bioenergetic consequences of exposure to the two agents.  相似文献   

16.
Exposure of rats to the cold (4-5 degrees C) caused large (2-3-fold) increases in the mass of interscapular brown adipose tissue (BAT), its mitochondrial content and the basal metabolic rate of the animals. The rate of substrate oxidation by BAT mitochondria also increased about 3-fold. When cold-acclimated animals were exposed to heat (37 degrees C), the BMR decreased by half in 3 h, the earliest time interval tested. Mitochondrial substrate oxidation, as well as substrate-dependent H2O2 generation, showed a proportionate decrease in rates. In these mitochondria, activities of cytochrome c reductases, but not dehydrogenases with NADH, alpha-glycerophosphate and succinate as substrates, also showed a significant decrease. The concentration of cytochromes aa3 and b, but not cytochrome c, also decreased in BAT mitochondria from 12-h heat-exposed animals, while the change in concentration of cytochrome b alone was found as early as 3 h of heat exposure. These results identify the change in cytochromes as a mechanism of regulation of oxidative activities in BAT mitochondria under conditions of acute heat stress.  相似文献   

17.
Saccharomyces cerevisiae was grown in batch culture over a wide range of oxygen concentrations, varying from the anaerobic condition to a maximal dissolved oxygen concentration of 3.5 muM. The development of cells was assayed by measuring amounts of the aerobic cytochromes aa(3), b, c, and c(1), the cellular content of unsaturated fatty acids and ergosterol, and the activity of respiratory enzyme complexes. The half-maximal levels of membrane-bound cytochromes aa(3), b, and c(1), were reached in cells grown in O(2) concentrations around 0.1 muM; this was similar to the oxygen concentration required for half-maximal levels of unsaturated fatty acid and sterol. However, the synthesis of ubiquinone and cytochrome c and the increase in fumarase activity were essentially linear functions of the dissolved oxygen concentration up to 3.5 muM oxygen. The synthesis of the succinate dehydrogenase, succinate cytochrome c reductase, and cytochrome c oxidase complexes showed different responses to changes in O(2) concentration in the growth medium. Cyanide-insensitive respiration and P(450) cytochrome content were maximal at 0.25 muM oxygen and declined in both more anaerobic and aerobic conditions. Cytochrome c peroxidase and catalase activities in cell-free homogenates were high in all but the most strictly anaerobic cells.  相似文献   

18.
N A Schroedl  C R Hartzell 《Biochemistry》1977,16(23):4966-4971
Oxidative titrations were performed on the electrostatic complex formed between cytochrome c and cytochrome aa3 at low ionic strength. Midpoint potentials of the redox centers in the proteins in 1:1 and 2:1 complexes were compared with those in mixtures of the cytochromes at high ionic strength. Computer simulations of all titrations yielded midpoint potentials for the components of cytochrome aa3 which were consistent with literature values for isolated cytochrome aa3 or mixture of cytochromes c and aa3. However, the unequal heme extinction coefficients observed previously (Schroedl, N.A., and Hartzell, C.R. (1977), Biochemistry 16, 1327) during oxidative titrations of cytochrome aa3 became equal in magnitude under these experimental conditions. The binding of cytochrome c to cytochrome aa3 changed the midpoint potentials of cytochrome aa3 by 15-20 mV, while the midpoint potentials for cytochrome c were altered by 50-60 mV. Careful analysis of these titrations including computer simulation revealed that cytochrome c was able to bind to cytochrome aa3 only after cytochrome aL2+ had become oxidized. When bound to cytochrome aa3, the midpoint potential of cytochrome c was 210 7V. Titrations performed under a carbon monoxide atmosphere revealed cytochrome aa3 midpoint potentials unchanged from reported values. Cytochrome c again exhibited a midpoint potential of 210 mV after binding to cytochrome aa3.  相似文献   

19.
A mutant of Neurospora crassa (cni-1) has been isolated that has two pathways of mitochondrial respiration. One pathway is sensitive to cyanide and antimycin A, the other is sensitive only to salicyl hydroxamic acid. Respiration can proceed through either pathway and both pathways together in this mutant account for greater than 90% of all mitochondrial respiration. The cni-1 mutation segregates as a nuclear gene in crosses to other strains of Neurospora. Absorption spectra of isolated mitochondria from cni-1 show typical b- and c-type cytochromes but the absorption peaks corresponding to cytochrome aa(3) are not detectable. Extraction of soluble cytochrome c-546 from these mitochondria followed by reduction with ascorbate reveals a new absorption peak at 426 nm that is not present in wild-type mitochondria. This peak may be due to an altered cytochrome oxidase with abnormal spectral properties. Mitochondria from cni-1 have elevated levels of succinate-cytochrome c reductase but reduced levels of nicotinamide adenine dinucleotide reduced form cytochrome c reductase and of cyanide- and azide-sensitive cytochrome c oxidase. These studies suggest that the cni-1 mutation results in the abnormal assembly of cytochrome c oxidase so that the typical cytochrome aa(3) spectrum is lost and the enzyme activity is reduced. As a consequence of this alteration, a cyanide-insensitive respiratory pathway is elaborated by these mitochondria which may serve to stimulate adenosine 5'-triphosphate production via substrate level phosphorylation by glycolysis and the Krebs cycle.  相似文献   

20.
Antibodies against cytochromes b and c1 of bovine heart mitochondria and the photosynthetic bacterium, Rhodopseudomonas sphaeroides R-26, were raised in rabbits. The purified antibodies showed high titers against their respective antigens in enzyme-linked immunosorbent assays. Less than 15% cross-reactivity between the mitochondrial and bacterial cytochromes was detected. Although antibodies against mitochondrial cytochrome b did not inhibit the mitochondrial cytochrome b-c1 complex, a 70% inhibition was obtained when these antibodies were incubated with delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids indicating that the catalytic site(s) of mitochondrial cytochrome b are masked by phospholipids. On the other hand, antibodies against bacterial cytochrome b showed significant inhibition of the intact bacterial cytochrome b-c1 complex, indicating that some of the catalytic site epitopes of bacterial cytochrome b are exposed to the hydrophilic environment. Similar to antibodies against mitochondrial cytochrome b, antibodies against bacterial cytochrome b inhibited 50% activity of the mitochondrial cytochrome b-c1 complex only when they were incubated with the delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids, indicating that the common epitopes between the cytochromes b are masked by phospholipids. Antibodies against mitochondrial and bacterial cytochromes c1 completely inhibited their respective cytochrome b-c1 complexes but no cross-immunoinhibition was observed. However, when antibodies against bacterial cytochrome c1 were incubated with the delipidated mitochondrial cytochrome b-c1 complex before reconstitution with phospholipids, a 65% inhibition was observed, indicating that the common epitopes between the cytochromes c1 were also somewhat masked by phospholipids. Antibodies against mitochondrial cytochrome c1 inhibited 70% of the succinate oxidase activity in the intact mitochondria preparation, but no inhibition was observed in submitochondrial particles, indicating that some mitochondrial cytochrome c1 epitopes are exposed to the cytoplasmic side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号