首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Na+,K+-ATPase has been isolated from canine heart with a specific activity as high as 200 μmoles of inorganic phosphate/mg protein/hour. Activity is not due to simple detergent activation since specific ouabain binding (i.e., [Mg++,Na+,ATP] or [Mg++,Pi]-ligand dependent) ranged from 200–450 pmoles/mg protein. Specific ouabain binding activities are up to ten times greater than heretofore reported.  相似文献   

2.
1. The tissue distribution of the (Na+ + K+)-ATPase in the freshwater/land crab Potamon Potamios was studied.2. Gills were found to display the highest total activity in the whole animal (47%) but the highest specific activity was detected in the heart (15.15 μmol Pi/mg protein/min.).3. All other organs tested were found to have low enzyme activity.4. The freshwater/land crab ATPase enzyme was inhibited by ouabain with a Ki of 0.5 mM.Km values for ATP, Mg2+ and K+ were 1.4, 4.0 and 1.2mM respectively. The enzyme also showed a break in the Arrhenius plot at 23°C.5. A purification method of microsomal ATPase is described involving ultracentrifugation and electrofocusing.  相似文献   

3.
The rates of association of [3H]ouabain to Na+,K+-ATPase and the rates of dissociation of the enzyme-ouabain complexes were determined for enzymes isolated from dog skeletal muscle, beef heart muscle, and lamb kidney medulla. The rates of association were strongly influenced by the presence of ligands such as magnesium, sodium, potassium, ATP, and inorganic phosphate. For a particular set of binding ligands, the rates of association did not vary much amongst the three enzymes studied, although enzyme from skeletal muscle was the fastest. In contrast, the rates of dissociation were relatively independent of the ligand conditions. The rates of dissociation also varied greatly amongst the enzyme sources, with skeletal muscle Na+,K+-ATPase being the fastest. Although the major determinant of the affinity of the Na+,K+-ATPase for ouabain is the rate of dissociation, the rate of association also plays a role. Since the binding of ouabain to the Na+,K+-ATPase in the presence of magnesium, ATP, sodium, and potassium is very slow, it is difficult to obtain an I50 (equilibrium) value for the inhibition of hydrolytic activity by ouabain. If measurements of activity are made after a long period of time (3 h), the affinity of the enzyme for ouabain, estimated from inhibition of Na+,K+-ATPase activity, approached the value calculated from [3H]ouabain binding. The ratio of the I50 value for ouabagenin to that for ouabain for the skeletal muscle enzyme was the same as that for cardiac muscle enzyme, indicating that the sugar moiety of ouabain was interacting with the receptor of both enzymes. It is apparent, therefore, that the absence of a sugar binding site in skeletal Na+,K+-ATPase is not the reason for the faster dissociation rate of this enzyme.  相似文献   

4.
A method is described for purification of (N+, K+)-ATPase which yields approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 μmol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600–700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with γ-32P-labeled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

5.
[3H]-Ouabain binding to muscle preparations was utilized to estimate the number of Na+,K+-ATPase enzyme units in hindlimbs from 8 week old lean and obese mice. Specific [3H]-ouabain binding per mg particulate protein was 36% lower in obese mice; whereas, the affinity of the binding sites for ouabain was similar in obese and lean mice. Since obese mice had less muscle than lean mice, the number of Na+,K+-ATPase enzyme units in hindlimbs from obese mice was less than half the number observed in lean mice.  相似文献   

6.
Studies have been carried out in the turkey erythrocyte to examine: (1) the influence of external K+ concentration on both [3H]ouabain binding and the sensitivity of potassium influx to inhibition by ouabain and (2) the quantitative relation between β-adrenergic receptor site occupancy, agonist-directed cyclic AMP generation and potassium influx rate. Both [3H]ouabain binding and the ability of ouabain to inhibit potassium influx are markedly reduced at increasing external K+ concentrations, and at each K+ concentration the concentrations of ouabain required for half-maximal binding to the erythrocyte membrane and for half-maximal inhibition of potassium influx are identical. Both basal and isoproterenol-stimulated potassium influx rise with increasing external K+ concentrations. In contrast to basal potassium influx, which is 50–70% inhibitable by ouabain, the isoproterenol-stimulated component of potassium influx is entirely insensitive to ouabain. At all concentrations of K+, inhibition of basal potassium influx by ouabain is linear with ouabain binding, indicating that the rate of transport per unoccupied ouabain binding site is unaffected by simultaneous occupancy of other sites by ouabain. Similarly, the rate of isoproterenol-stimulated cyclic AMP synthesis is directly proportional to β-adrenergic receptor occupancy over the entire concentration-response relationship for isoproterenol, showing that at all levels of occupancy β-adrenergic receptor sites function independently of each other.Analysis of the relation of catecholamine-dependent potassium transport to the number of β-adrenergic receptor sites occupied indicates an extremely sensitive physiological system, in which 50%-maximal stimulation of potassium transport is achieved at less than 3% receptor occupancy, corresponding to fewer than ten occupied receptors per cell.  相似文献   

7.
Two brain soluble fractions, named peaks I and II, which respectively stimulate and inhibit neuronal Na+, K+-ATPase activity, have been isolated by gel filtration in Sephadex G-50. Since cholinergic transmission seems related to such enzyme activity, in this study we evaluated the effect of brain peak I, peak II, a more purified fraction II-E and commercial ouabain, on specific binding of the muscarinic antagonist [3H]quinuclidinyl benzilate to membranes from rat cerebellum, hippocampus and cerebral cortex. We found that binding was increased by peak I and decreased by peak II, II-E and ouabain, all effects proving concentration-dependent. Since the changes exerted on the muscarinic receptor followed a pattern similar to the one already described for synaptosomal membrane Na+, K+-ATPase activity, both systems seem to interact at a functional level.  相似文献   

8.
Cardiac glycosides are inhibitors of Na+,K+-ATPase, and K+-phosphatase activities of the transport enzyme. Previous studies have shown that when the sensitivities of these two activities to ouabain are compared by the addition of varying concentrations of the drug to the assay media, the K+-phosphatase is significantly less sensitive than Na+,K+-ATPase. This work was done to seek an explanation for this phenomenon. 3-O-Methyl-fluorescein phosphate was used as substrate for the continuous fluorimetric assay of K+-phosphatase obtained from human red cells. When ouabain was added to the assay medium, a time-dependent inhibition of K+-phosphatase was observed. The rate of inhibition was also influenced by the order of additions of K+ and ouabain. In view of these results, several enzyme samples exposed to ouabain for varying lengths of time were prepared, and their Na+,K+-ATPase and K+-phosphatase activities were then determined. A good correlation between the extent of inhibition of the two activities was obtained. These results prove that the previously observed discrepancies between the sensitivities of Na+,K+-ATPase and K+-phosphatase to ouabain are due to the different kinetics of drug interaction with the enzyme under the different conditions of the two assays and that once a certain level of ouabain binding to the enzyme is achieved, both activities are equally inhibited.  相似文献   

9.
Potassium fluxes, ouabain binding, and Na+ and K+ intracellular concentrations were determined for cultures of growing normal, density-inhibited and Rous sarcoma virus-transformed chicken embryo fibroblasts. No significant differences in K+ influx or ouabain binding were detected between growing normal cells and Rous sarcoma virus-transformed cells; however, ouabain binding and ouabain-sensitive K+ influx were 1.5- to 1.8-fold lower in density-inhibited cells. Thus, potassium influx in this system can be classified as a growth-related, but not transformation-specific change. As determined by both flame photometry and radioisotopic (42K) equilibration, growing normal and density-inhibited cells had similar potassium contents, whereas transformed cells exhibited 1.4-fold higher potassium levels. Sodium ion levels, as measured by flame photometry, were also 2- to 4.5-fold higher in transformed than normal or density-inhibited cells. Complementary studies of potassium efflux showed a 1.3- to 1.5-fold higher rate (based on the percentage of pool exiting the cell) in growing normal versus density-inhibited or transformed fibroblasts. Because of the larger potassium pool in transformed cells, efflux based on absolute number of potassium ions is similar in normal and transformed chicken embryo fibroblasts.  相似文献   

10.
Comparison of Na,K-ATPase from skeletal and cardiac muscle revealed that, although the skeletal muscle enzyme was only slightly less sensitive to inhibition by ouabain, the rates of [3H]ouabain binding to, and dissociation from, the skeletal enzyme were much faster than the corresponding rates for the cardiac enzyme. The skeletal muscle enzyme required higher concentrations of potassium to stabilize the ouabainenzyme complex and to stimulate the K+-phosphatase activity. The K+-phosphatase activity was only 8% of the Na,K-ATPase activity of the skeletal muscle enzyme, compared to 22% for the cardiac preparation. The glycoprotein subunit found in Na,K-ATPases from cardiac and many other tissues appeared to be absent in the enzyme from skeletal muscle. The differences in binding and dissociation rates for ouabain suggest that there may be significant differences in the structure of the digitalis receptor in the two enzymes. The I50 for ouabain inhibition of the skeletal muscle Na,K-ATPase was, however, only slightly higher than for the cardiac enzyme, suggesting that the lack of an inotropic effect of cardiac glycosides on skeletal muscle could not be due to failure of the digitalis drugs to bind to and inhibit the membrane-linked sodium pump.  相似文献   

11.
The interactions of ouabain and vanadate with (Na+,K+)ATPase were investigated at different potassium concentrations. Also, the contractile effects of a mixture of these two inhibitors were compared to those produced by ouabain or vanadate alone. The results from the enzyme and contractile studies suggested that inhibition of sarcolemmal (Na+,K+)ATPase was involved in mediating the positive inotropic effect of vanadate.  相似文献   

12.
Human leukemia K562 cell differentiation induction by naturally occurring bufadienolides purified from the Chinese drug Senso and synthetic bufalin derivatives was examined by a nitro blue tetrazolium reduction assay. Bufalin showed the strongest activity among all the bufadienolides tested in this study. The degree of the induction of nitro blue diformazan positive cells by the bufadienolides correlated well with their inhibitory activities against Na+, K+ -ATPase prepared from K562 cells in vitro. N+, K+ -ATPases from a variant K562 clone (ouabain resistant, OuaR) and murine leukemia cell line M1-T22, which were insensitive to the bufadienolides in terms of growth inhibition and cell differentiation, appeared to be refractory to bufalin in vitro. A binding study of 3H-bufalin and 3H-ouabain revealed that saturated levels of both ligands associated with K562 cells were virtually similar; however, affinity of 3H-bufalin was considerably higher than 3H-ouabain. The saturated level of 3H-bufalin observed in the OuaR cells was approximately half of that observed in K562 cells without a change in its affinity. Association of 3H-bufalin with K562 cells was completely blocked by pretreatment of the cells with cold ouabain at concentrations saturating the binding sites. These results suggest that bufalin acts on the cells by binding to sites on the cell membrane which also bind ouabain. It is thus proposed that N+, K+ -ATPase inhibition is closely related to the initiation process in the induction of K562 cell differentiation induced by bufalin. © 1994 Wiley-Liss, Inc.  相似文献   

13.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK d was 96 nM; substituting MnCl2 decreased theK d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK 0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI 50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.  相似文献   

14.
  • 1.1. Cimetidine was more potent 4hr after a single injection of 25 or lOOmg/kg body wt in increasing gastric pH than other H2 receptor antagonists, ranitidine and famotidine but was less efficient than H+/K+-ATPase inhibitors. Omeprazole rose proventricular and gizzard pH at a lower dose than SCH 28080 and Ro 18-5364 (30, 50 and 200 mg/kg body wt, respectively).
  • 2.2. Proventricular and gizzard pH values were maximal 1 and 4 hr after a single injection of 7.5 μmol/kg body wt omeprazole. Inhibition of acid secretion was maintained for 24 hr after an injection of 100 μmol/kg.
  • 3.3. H+/K+-ATPase activity in vitro was 10μimol Pi/hr/mg protein in the microsomal fractions of the proventriculus. It was doubled by nigericine and inhibited by SCH 28080. However, western blots by high specific H+/K+-ATPase monoclonal antibody 95-A3 and 95–111 recognized a 42kDa band but hardly exhibited the specific 95 kDa band recognition.
  • 4.4. Chickens and immature pullets showed a higher H+/K+ -ATPase activity than laying hens. Calcium level of the diet did not affect the enzyme activity but coarse particles of calcium fed to pullets or laying hens enhanced the H+/K+-ATPase activity when compared with ground particles.
  相似文献   

15.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 μmol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in “calcium-oxalate preparation” from hearts are proteins with molecular weights of about 100 000 (Ca2+-dependent ATPase) and 55 000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12–16 μmol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   

16.
Binding of [14C]ethaerynic acid [EA]at concentrations of EA from 10?4m to 10?2m to a membrane preparation containing Na+,K+-ATPase activity in vitro occurred in a nonsaturable manner; binding was stimulated by Na+ or K+, but was not affected by Mg2+ and/or ATP. [14C]EA significantly bound to a microsomal preparation with low Na+,K+-ATPase activity as well as to a heat-denatured enzyme; this binding reaction was not stimulated by Na+. These observations suggest that EA binds non-specifically or to nonspecific sites on membrane preparations. Nonselective binding of [14C]EA to subcellular particles after fractionation of slices also suggested the presence of nonspecific EA binding sites in vivo. In vitro [3H]ouabain binding to medullary and cortical Na+,K+-ATPase preparations was partially reduced by pretreatment with EA. On the other hand, [14C]EA binding to Na+,K+-ATPase was not affected by pretreatment of the preparation with ouabain (10?6m to 5 × 10?4m). EA reduced the sensitivity of [3H]ouabain binding to the enzyme preparation to Na4 and K+.EA was infused (0.1, 1.0, and 10 mg/min) into one renal artery of hydropenic dogs. A prompt natriuresis in the infused kidney occurred. Similar changes were observed in the contralateral kidney 20 min after starting the infusion. Both kidneys were removed 30 min after the beginning of the infusion, and Na+,K+-ATPase was isolated from the cortex and the medulla. Enzyme activity from cortex and medulla of either kidney was not significantly different from enzyme activity from cortex and medulla of control, uninfused dogs, regardless of dose of EA or method of enzyme isolation. Furthermore, in vitro binding of [3H]ouabain to Na+,K+-ATPase membrane preparations from cortex and medulla was the same for experimental and control kidneys. In vitro incubation of 2 × 10?3m EA with a membrane preparation caused the same inhibition of ATPase activity when the enzyme was isolated either from control or EA-infused dogs. The inhibition could not be reversed by recentrifugation or rehomogenization of the enzyme. Our results do not support the concept that Na+,K+-ATPase is a pharmacological receptor for ethacrynic acid.  相似文献   

17.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

18.
IN an earlier paper1 we have presented a model for a sodium pump based on the operation of the adenosine triphosphatase component of membranes which is sensitive to ouabain and is activated by sodium and potassium; that is (Na++K+)-ATPase. We attempted to correlate the biochemical properties of this enzyme system as they were then known with the essential properties of Na+ transport systems. The model suggested further experiments which could clarify the role of (Na+ + K +)-ATPase in ion transport and some experimental evidence is now available for the stoichiometry of ouabain binding to isolated enzyme preparations2,3 although differences in the experimental techniques which have been used make the data equivocal.  相似文献   

19.
20.
(Na++K+)-ATPase is a target receptor of digitalis (cardiac glycoside) drugs. It has been demonstrated that the H1-H2 domain of the α-subunit of the (Na++K+)-ATPase is one of the digitalis drug interaction sites of the enzyme. Despite the extensive studies of the inhibitory effect of digitalis on the (Na++K+)-ATPase, the functional property of the H1-H2 domain of the enzyme and its role in regulating enzyme activity is not completely understood. Here we report a surprise finding: instead of inhibiting the enzyme, binding of a specific monoclonal antibody SSA78 to the H1-H2 domain of the (Na++K+)-ATPase elevates the catalytic activity of the enzyme. In the presence of low concentration of ouabain, monoclonal antibody SSA78 significantly protects enzyme function against ouabain-induced inhibition. However, higher concentration of ouabain completely inactivates the (Na++K+)-ATPase even in the presence of SSA78. These results suggest that the H1-H2 domain of the (Na++K+)-ATPase is capable of regulating enzyme function in two distinct ways for both ouabain-sensitive and -resistant forms of the enzyme: it increases the activity of the (Na++K+)-ATPase during its interaction with an activator; it also participates in the mechanism of digitalis or ouabain-induced inhibition of the enzyme. Understanding the dual activity of the H1-H2 domain will help better understand the structure-function relationships of the (Na++K+)-ATPase and the biological processes mediated by the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号