首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In virtue of analysis of data on the interaction of tricarboxylic acid cycle enzymes with the mitochondrial inner membrane and data on the enzyme-enzyme interactions, the spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon) is proposed. The alpha-ketoglutarate dehydrogenase complex, adsorbed on the mitochondrial inner membrane along one of its 3-fold symmetry axes, plays the key role in the formation of metabolon. Two association sites of the alpha-ketoglutarate dehydrogenase complex located on opposite sides of the complex participate in the interaction with the membrane. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleosidediphosphate kinase. Succinate dehydrogenase, the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of metabolon on the membrane. The molecular mass of the complex (ignoring succinate dehydrogenase) is of 8.10(6) daltons. The metabolon symmetry corresponds to the D3 point symmetry group. It is supposed, that the tricarboxylic acid cycle enzyme complex interacts with other multienzyme complexes of the matrix and the electron transfer chain.  相似文献   

2.
Supramolecular organization of tricarboxylic acid cycle enzymes   总被引:1,自引:0,他引:1  
We propose a spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon). The structure is based on an analysis of data on the interaction between tricarboxylic acid cycle enzymes and the mitochondrial inner membrane, as well as on data on enzyme-enzyme interactions. The alpha-ketoglutarate dehydrogenase complex, adsorbed along one of the 3-fold symmetry axes of the mitochondrial inner membrane, plays a key role in formation of the metabolon. In the interaction with the membrane, two association sites of the alpha-ketoglutarate dehydrogenase complex participate, placed on opposite sides of the complex. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleoside-diphosphate kinase. Succinate dehydrogenase, which is the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of the metabolon on the membrane. The molecular mass of the complex (without regard to succinate dehydrogenase) is 8 x 10(6) Da. The metabolon symmetry corresponds to the D3 point symmetry group.  相似文献   

3.
Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98 g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29 mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.  相似文献   

4.
Flavonoid metabolons (weakly‐bound multi‐enzyme complexes of flavonoid enzymes) are believed to occur in diverse plant species. However, how flavonoid enzymes are organized to form a metabolon is unknown for most plant species. We analyzed the physical interaction partnerships of the flavonoid enzymes from two lamiales plants (snapdragon and torenia) that produce flavones and anthocyanins. In snapdragon, protein–protein interaction assays using yeast and plant systems revealed the following binary interactions: flavone synthase II (FNSII)/chalcone synthase (CHS); FNSII/chalcone isomerase (CHI); FNSII/dihydroflavonol 4‐reductase (DFR); CHS/CHI; CHI/DFR; and flavonoid 3′‐hydroxylase/CHI. These results along with the subcellular localizations and membrane associations of snapdragon flavonoid enzymes suggested that FNSII serves as a component of the flavonoid metabolon tethered to the endoplasmic reticulum (ER). The observed interaction partnerships and temporal gene expression patterns of flavonoid enzymes in red snapdragon petal cells suggested the flower stage‐dependent formation of the flavonoid metabolon, which accounted for the sequential flavone and anthocyanin accumulation patterns therein. We also identified interactions between FNSII and other flavonoid enzymes in torenia, in which the co‐suppression of FNSII expression was previously reported to diminish petal anthocyanin contents. The observed physical interactions among flavonoid enzymes of these plant species provided further evidence supporting the long‐suspected organization of flavonoid metabolons as enzyme complexes tethered to the ER via cytochrome P450, and illustrated how flavonoid metabolons mediate flower coloration. Moreover, the observed interaction partnerships were distinct from those previously identified in other plant species (Arabidopsis thaliana and soybean), suggesting that the organization of flavonoid metabolons may differ among plant species.  相似文献   

5.
《Fungal biology》2020,124(1):15-23
Metabolons are dynamic associations of enzymes catalyzing consecutive reactions within a given pathway. Association results in enzyme stabilization and increased metabolic efficiency. Metabolons may use cytoskeletal elements, membranes and membrane proteins as scaffolds. The effects of glucose withdrawal on a putative glycolytic metabolon/F-actin system were evaluated in three Saccharomyces cerevisiae strains: a WT and two different obligate fermentative (OxPhos-deficient) strains, which obtained most ATP from glycolysis. Carbon source withdrawal led to inhibition of fermentation, decrease in ATP concentration and dissociation of glycolytic enzymes from F-actin. Depending on the strain, inactivation/reactivation transitions of fermentation took place in seconds. In addition, when ATP was very low, green fluorescent protein-labeled F-actin reorganized from highly dynamic patches to large, non-motile actin bodies containing proteins and enzymes. Glucose addition restored fermentation and cytoskeleton dynamics, suggesting that in addition to ATP concentration, at least in one of the tested strains, metabolon assembly/disassembly is a factor in the control of the rate of fermentation.  相似文献   

6.
A hypothetical structure of the glycolytic enzyme complex (glycolytic metabolon) adsorbed on the inner surface of the erythrocyte membrane has been proposed. Oligomers of integral membrane protein, band 3 protein (anion-transport system), are the anchor site for the complex. The complex is supposed to have a three-fold symmetry axis, perpendicular to the membrane plane, and contains a triple set of the glycolytic enzymes. The complex is in equilibrium with free enzymes; the equilibrium state depends on the physiological state of the erythrocyte.  相似文献   

7.
Metabolons involving plant cytochrome P450s   总被引:2,自引:0,他引:2  
Arranging biological processes into “compartments” is a key feature of all eukaryotic cells. Through this mechanism, cells can drastically increase metabolic efficiency and manage complex cellular processes more efficiently, saving space and energy. Compartmentation at the molecular level is mediated by metabolons. A metabolon is an ordered protein complex of sequential metabolic enzymes and associated cellular structural elements. The sub-cellular organization of enzymes involved in the synthesis and storage of plant natural products appears to involve the anchoring of metabolons by cytochrome P450 monooxygenases (P450s) to specific domains of the endoplasmic reticulum (ER) membrane. This review focuses on the current evidence supporting the organization of metabolons around P450s on the surface of the ER. We␣outline direct and indirect experimental data that describes P450 enzymes in the phenylpropanoid, flavonoid, cyanogenic glucoside, and other biosynthetic pathways. We also discuss the limitations and future directions of metabolon research and the potential for application to metabolic engineering endeavors.  相似文献   

8.
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.  相似文献   

9.
In Saccharomyces cerevisiae, which uses the nonlinear pathway of arginine biosynthesis, the first two enzymes, N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK), are controlled by feedback inhibition. We have previously shown that NAGS and NAGK associate in a complex, essential to synthase activity and protein level [Abadjieva, A., Pauwels, K., Hilven, P. & Crabeel, M. (2001) J. Biol. Chem.276, 42869-42880]. The NAGKs of ascomycetes possess, in addition to the catalytic domain that is shared by all other NAGKs and whose structure has been determined, a C-terminal domain of unknown function and structure. Exploring the role of these two domains in the synthase/kinase interaction, we demonstrate that the ascomycete-specific domain is required to maintain synthase activity and protein level. Previous results had suggested a participation of the third enzyme of the pathway, N-acetylglutamylphosphate reductase, in the metabolon. Here, genetic analyses conducted in yeast at physiological level, or in a heterologous background, clearly demonstrate that the reductase is dispensable for synthase activity and protein level. Most importantly, we show that the arginine feedback regulation of the NAGS and NAGK enzymes is mutually interdependent. First, the kinase becomes less sensitive to arginine feedback inhibition in the absence of the synthase. Second, and as in Neurospora crassa, in a yeast kinase mutant resistant to arginine feedback inhibition, the synthase becomes feedback resistant concomitantly. We conclude that the NAGS/NAGK metabolon promotes the co-ordination of the catalytic activities and feedback regulation of the first two, flux controlling, enzymes of the arginine pathway.  相似文献   

10.
Malate dehydrogenase (MDH) and citrate synthase (CS) are two pacemaking enzymes involved in the tricarboxylic acid (TCA) cycle. Oxaloacetate (OAA) molecules are the intermediate substrates that are transferred from the MDH to CS to carry out sequential catalysis. It is known that, to achieve a high flux of intermediate transport and reduce the probability of substrate leaking, a MDH‐CS metabolon forms to enhance the OAA substrate channeling. In this study, we aim to understand the OAA channeling within possible MDH‐CS metabolons that have different structural orientations in their complexes. Three MDH‐CS metabolons from native bovine, wild‐type porcine, and recombinant sources, published in recent work, were selected to calculate OAA transfer efficiency by Brownian dynamics (BD) simulations and to study, through electrostatic potential calculations, a possible role of charges that drive the substrate channeling. Our results show that an electrostatic channel is formed in the metabolons of native bovine and recombinant porcine enzymes, which guides the oppositely charged OAA molecules passing through the channel and enhances the transfer efficiency. However, the channeling probability in a suggested wild‐type porcine metabolon conformation is reduced due to an extended diffusion length between the MDH and CS active sites, implying that the corresponding arrangements of MDH and CS result in the decrease of electrostatic steering between substrates and protein surface and then reduce the substrate transfer efficiency from one active site to another.  相似文献   

11.
We have used F?rster resonance energy transfer detected by fluorescence lifetime imaging microscopy (FLIM-FRET) to provide the first evidence from living plants cells for the existence of a flavonoid metabolon. The distribution of flux within this system may be regulated by the direct competition of enzymes that catalyze key branch-point reactions, flavonol synthase 1 and dihydroflavonol 4-reductase, for association with the entry-point enzyme, chalcone synthase. Because the flavonoid enzymes were likely recruited from pathways of primary metabolism, our findings suggest a new general working model for the regulation of dynamic pathways in their native cellular context.  相似文献   

12.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

13.
Motivations for the hierarchical assembly of protein complexes are diverse spanning biosensing, biomedical and bioreactor applications. The assembly processes should be simple, scalable, versatile, and biologically benign to minimize loss of component parts. A “plug and play” methodology comprising a generic linking apparatus may enable rapid design and optimization. One application that desires these qualities is metabolon construction wherein multiple enzymes are organized in defined pathways to mediate biochemical flux. Here, we propose a modular design by incorporation of crosslinking-compliant amino acid tags comprised of lysine or glutamine residues at the N- or C-termini of the to-be-assembled proteins. These amino acid tags enable covalent crosslinking using microbial transglutaminase (mTG). Modularity is demonstrated where stoichiometries and relative positions of enzymes and other functional proteins are altered. Construction of multifunctional complexes is demonstrated by crosslinking domains of different function and origin. Namely, we built a two-subunit quorum sensing (QS) biosynthetic metabolon on solid supports and altered stoichiometries of the limiting constituents to increase the overall rate of reaction. To display functionality beyond biosynthesis, we constructed a molecular communication ‘device’ (antibody binding Protein G–QS complex) to target bacterial cells and demonstrated tailored QS responses among targeted bacteria. We propose that this approach, solid phase mTG-mediated linkage of biological components, can be used for assembly within many environments including microreactors or lab-on-a-chip systems. Because the methodology is general, we envision construction of multi-functional protein complexes in a ‘plug and play’ fashion for a variety of biosensing and synthetic biology applications.  相似文献   

14.
Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome‐dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme‐derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C‐terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000‐fold higher than the affinity of the holoprotein, suggesting a “kiss‐and‐go” mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.  相似文献   

15.
Isoflavonoids are specialized plant metabolites, almost exclusive to legumes, and their biosynthesis forms a branch of the diverse phenylpropanoid pathway. Plant metabolism may be coordinated at many levels, including formation of protein complexes, or ‘metabolons’, which represent the molecular level of organization. Here, we have confirmed the existence of the long‐postulated isoflavonoid metabolon by identifying elements of the complex, their subcellular localizations and their interactions. Isoflavone synthase (IFS) and cinnamate 4–hydroxylase (C4H) have been shown to be tandem P450 enzymes that are anchored in the ER, interacting with soluble enzymes of the phenylpropanoid and isoflavonoid pathways (chalcone synthase, chalcone reductase and chalcone isomerase). The soluble enzymes of these pathways, whether localized to the cytoplasm or nucleus, are tethered to the ER through interaction with these P450s. The complex is also held together by interactions between the soluble elements. We provide evidence for IFS interaction with upstream and non‐consecutive enzymes. The existence of such a protein complex suggests a possible mechanism for flux of metabolites into the isoflavonoid pathway. Further, through interaction studies, we identified several candidates that are associated with GmIFS2, an isoform of IFS, in soybean hairy roots. This list provides additional candidates for various biosynthetic and structural elements that are involved in isoflavonoid production. Our interaction studies provide valuable information about isoform specificity among isoflavonoid enzymes, which may guide future engineering of the pathway in legumes or help overcome bottlenecks in heterologous expression.  相似文献   

16.
Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.  相似文献   

17.
Further characterization of the Krebs tricarboxylic acid cycle metabolon   总被引:1,自引:0,他引:1  
A preparation of gently disrupted rat liver mitochondria which shows exposed and easily sedimented Krebs tricarboxylic acid cycle enzyme activities has been characterized further. The exposed malate dehydrogenase is inhibited by high molecular weight blue dextran which indicates the availability of the enzyme to the bulk solvent. Further, mitoplasts are not permeable to citrate synthase antibodies ruling out the possibility of vesicularization of high molecular weight substances. The slightly disrupted mitochondria sedimented more slowly than did intact mitochondria on a Ficoll gradient. Electron microscopy, both thin section and scanning, showed slightly swollen mitochondria with some disruption of the membranes. Labeling with ferritin-labeled second antibody to citrate synthase antibodies showed again the accessibility of these disrupted mitochondria to the antibody. When either the oxidation of fumarate or the malate dehydrogenase-citrate synthase coupled system are studied, relative kinetic advantages are observed of the gently disrupted systems over the completely solubilized system. These kinetic advantages are more labile to disruption than is the binding of the enzymes to the particle. These results indicate that the Krebs tricarboxylic acid cycle exists as a sequential complex of enzymes, a metabolon, in situ. This study shows that previous studies which showed interactions between sequential enzymes of this pathway and their binding to the inner surface of the inner membrane actually reflected an in vivo organization of this pathway.  相似文献   

18.
Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein–protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes.  相似文献   

19.

Metabolons are multi-enzyme protein complexes composed of enzymes catalyzing sequential reactions in a metabolic pathway. Metabolons mediate substrate channeling between the enzyme catalytic cores to enhance the pathway reactions, to achieve containment of reactive intermediates, and to prevent access of competing enzymes to the intermediates. These provide unique advantages in metabolic regulation. The discovery of plant metabolons has been accelerated by the recent technical developments and a considerable number of metabolons involved in both primary and secondary metabolism have been indicated in the last decade. These findings related with plant metabolons are comprehensively reviewed in this review, indicating metabolome-wide engagement of metabolons. However, there are still unexplored frontiers remaining for further discovery of metabolons in plant metabolism. Pathways with high potential of novel metabolon and technical issues to be solved for the future discovery will also be discussed.

  相似文献   

20.
Tricarboxylic acid cycle enzymes following thiamine deficiency   总被引:3,自引:0,他引:3  
Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号