首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultivation of Aspergillus oryzae on starch is described as a combination of two rate processes: Starch hydrolysis and the cellular activities of the fungi including growth, enzyme production and maintenance. Kinetic models are presented to describe growth, enzyme production, starch hydrolysis and uptake of the hydrolysis products. Numerical values of the model parameters indicated that the rate controlling step of A. oryzae growth on starch was not starch hydrolysis, but the substrate uptake process. Glucose was one of the starch hydrolysis products. About 35% of the substrate consumed for biomass synthesis was glucose. Its accumulation in the medium did not cause repression of the starch hydrolysing enzymes. Steady state starch hydrolysis rates increased with initial starch concentration in the medium. Starch hydrolysing enzymes of A. oryzae have extensive industrial uses. This study may help in a more detailed understanding of the kinetic aspects of the production of these enzymes.  相似文献   

2.
The mechanism of starch degradation by the fungus Trichoderma viride was studied in strain CBS 354.44, which utilizes glucose, starch and dextrins but is unable to assimilate maltose. It was shown that the amylolytic enzyme system is completely extracellular, equally well induced by starch, amylose or amylopectin and that it consists mainly of enzymes of the glucoamylase type which yield glucose as the main product of starch hydrolysis. Small amounts of -amylase are produced also. The enzymes produced in starch cultures degrade starch, amylose and amylopectin equally well.Enzyme synthesis in starch media takes place to a considerable extent after exhaustion of the carbon source when maximum growth has been attained.Low-molecular dextrins are degraded by extracellular enzymes of the glucoamylase type. These enzymes are produced in media containing starch or dextrins. Maltotriose is consumed for only one third leaving maltose in the culture filtrate. Maltose is hardly attacked and hardly induces any amylolytic enzyme activity. No stable -glucosidase appears to be produced.  相似文献   

3.
Recombinant Saccharomyces cerevisiae YPB-G strain secreting a fusion protein displaying both BsAAase/GAase activities was grown in 1.5 l YPS media containing single (starch) and mixed carbon sources (glucose+starch) using a 2.5 l New Brunswick BiofloIII fermenter. Ethanol and biomass formation, starch utilisation, secretion of the amylolytic enzymes (-amylase and glucoamylase), accumulation of reducing sugars and glucose were followed during the fermentation of YPB-G under different conditions. Moreover, a model has been developed for the growth of recombinant yeast on substitutable substrates using cybernetic framework principles and incorporating product formation. In the present work, both the biphasic and the diauxic growth patterns observed experimentally in batch culture of recombinant yeast cells were simulated successfully by modifying the cybernetic framework to include ethanol formation and the degradation kinetics of starch which is not directly utilised by yeast. The model can further be expanded to fed-batch systems.  相似文献   

4.
Saccharomycopsis fibuligera ST 2 produced high levels of extracellular amylase during the stationary phase of growth. Glucose or other low molecular weight metabolizable sugars did not repress the synthesis of the amylase, indicating the lack of catabolite repression in this organism. Of the nitrogen sources examined, yeast extract and corn steep liquor stimulated the highest yield of amylase. Ammonium sulphate inhibited α-amylase synthesis. The enzyme was purified 118-fold from the culture supernatant fluid by isopropanol precipitation and DEAE-Sephadex A50 chromatography. The purified enzyme was characterized as an α-amylase. The α-amylase had the following properties: molecular weight, 40900 ± 500; optimum temperature, 60°C; activation energy, 1600 cal/mol; optimum pH, 4·8–6·0; range of pH stability, pH 4·0–9·4; Km (50°C, pH 5·5) for soluble starch, 0·572 mg/ml; final products of starch hydrolysis—glucose, maltose, maltotriose and maltotetraose.  相似文献   

5.
Cyclodextrin glucanotransferase [CGTase, E.C.2.4.1.19] is an extracellular enzyme, which catalyzes the formation of α−, β−, γ− CDs from starch. Their proportions of formations depend on enzyme sources and reaction conditions. To understand what determines the product specificity of CGTases, we examined the alteration of product specificity of CGTase fromBacillus macerans by organic solvents and pH. At acidic pH range less than pH 6 where the enzyme was unstable, the ratio of α−/β-CD production was increased 4 times more than that at neutral pH range. As we increased the concentration of 2-butanol, α−/β-CD ratio was proportionally increased but/ratio remained constant. The α−/β-CD ratio of products was increased in the reaction media which yielded low products.  相似文献   

6.
1. The strain M 5 al of Klebsiella pneumoniae grows excellently with starches. We were able to show that besides the pullulanase associated with the external membrane of the cells the bacterium produces an inducible, extracellular cyclodextrin glucanotransferase [1,4-alpha-D-glucan-4-alpha-(1,4-alpha-glucano)-transferase (cyclising) (EC 2.4.1.19)]. Potato starch and cyclohexaamylose or cycloheptaamylose were found to be the best "inducing" carbon sources for the synthesis of the enzyme. When the bacteria are grown batchwise, maltose is a poorly "inducing" carbon source; larger quantities of the enzyme are synthesized by continuous cultivation with maltose as growth limiting factor. 2. For the determination of the cyclodextrin glucanotransferase-activity an assay method wsa worked out. 3. The enzyme could be separated from the culture filtrate and purified to more than 90% in few steps. At a total yield of 61.2% related to the activity of the culture filtrate employed we received an enzyme solution with the specific activity of 26.6 units/mg protein. Some properties of the enzyme are described. 4. The products formed from amylopectin by the enzyme were analyzed. Somewhat more than half the amylopectin was found as cyclodextrins. 29.3% of the cyclodextrin fraction were cycloheptaamylose, 47.2% cyclohexaamylose and 10.7% exo-branched cyclohexaamylose. 12.8% of cyclohexaamylose were obtained from a cyclodextrin glucanotransferase-limit dextrin after debranching by pullulanase and exposing the product to the action of the glucanotransferase again. 5. The importance of the cyclodextrin glucanotransferase for the utilization of starches by this strain of Klebsiella pneumoniae is discussed. After a first characterization the enzyme is compared to the amylase of Bacillus macerans.  相似文献   

7.
From 18 strains of cellulolytic microorganisms including bacteria and filamentous fungi, one strain of soft rot fungus identified as Chaetomium cellulolyticum was screened with respect to stronger decomposition ability of cellulose and hemicellulose and its ability for protein synthesis. As it grew on raw corn straw in solid layer fermentation (SLF) for 5 days, the amino acid content in the fermentation product attained 19.29% (w/w) from 6.43% while the total cell wall was reduced by 54%. A toxicity test with mice showed that the fermentation product is not poisonous. The two filamentous fungi, Trichoderma pseudokoningii S-38 and Penicillium decumbens JU-A10 produced large amounts of extracellular cellulase and hemicellulase in the SLF process, but their growth was limited and they sporulated profusely with regard to their value as animal feed products.  相似文献   

8.
Studies on simultaneous hydrolysis of starch and synthesis of cyclodextrins by Thermo-aerobacter cyclodextrin glucosyltransferase were conducted in an ultrafiltration membrane bioreactor, allowing enzyme recovery and reduction of product inhibition. The influence of various reaction parameters like starch concentration, enzyme dosage and residence time on cyclodextrin composition was tested. A comparison of batch and continuous cyclodextrin production indicates that employing an ultrafiltration membrane bioreactor increases process efficiency.  相似文献   

9.
Rhizoctonia bataticola produced the highest amounts of amylase in medium containing starch than that lacking starch within the 10 days of culture. Doubling the concentration of starch in the growth medium resulted in a near doubling of the amylase activity. Amylase production by the fungus is related to the type of carbon source in the medium with maximum amylase produced in medium containing starch. The maximum activity of the enzyme was detected in extracellular filtrates obtained from 4 days cultures. After this period, amylase activity decreased at first, and then increased through the 10 days incubation period. The fungus produced maximum levels of amylase prior to attainment of maximum mycelial biomass. Peak activity of the extracellular amylase was recorded at a temperature and pH range of 20–25°C and 4–5 respectively. The role of the exoenzyme in the deterioration of stored food products and its possible use in industrial fermentation processes are discussed.  相似文献   

10.
11.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

12.
Alcohol dehydrogenase, EC 1.1.1.1 (ADH), from the thermophilic archaebacterium Sulfolobus solfataricus (SsADH) is a strictly NAD+-dependent enzyme with an amino acid sequence related to those of horse liver, yeast and Thermoanaerobium brockii ADHs. This enzyme is remarkably thermophilic and thermostable; protein stability is strictly dependent on the presence of structural zinc in the molecule. For its broad substrate specificity, product stereoselectivity and acceptance of NAD+-macromolecular derivatives, SsADH appears suitable for laboratory-scale chemoselective synthesis. Moreover, it represents a useful protein model for studying the structure-function-stability relationships in thermophilic enzymes.  相似文献   

13.
The alpha-amylase enzyme synthesis was higher when M. thermophila D-14 (ATCC 48104) was grown in culture medium incorporated with starch or other carbohydrates containing maltose units. Maximum enzyme production was attained with 1% starch followed by a gradual decrease with increasing concentration. Marked decrease in alpha-amylase synthesis occurred with the addition of glucose to the culture medium and this decreasing activity was proportional to the concentration of glucose. The enzyme synthesis was resumed as soon as the glucose concentration fell below a critical level. The addition of cAMP did not eliminate the repressive activity of glucose. The findings suggest that extracellular alpha-amylase synthesis in M. thermophila D-14 was inducible and subject to catabolite repression.  相似文献   

14.
A mathematical model has been developed to simulate the pseudo-crystallofermentation process of hydrocortisone by Arthrobacter simplex. The model describing the process included considerations on the kinetics of microbial growth, the rate of enzyme formation, the rate of substrate dissolution, the rate of solute crystallization, and the kinetics of enzymatic reaction. The system of equations was solved numerically by the Runge-Kutta-Gill method. The good agreement between prediction and experiment indicated the reliability of the established model. The simulation was capable of predicting the time when the crystallization of product occurred, which could be further verified by microscopic observation on the culture medium, as well as cell growth, enzyme synthesis, product formation, and the composition of the final product crystals.  相似文献   

15.
A structured kinetic model was proposed to describe cell growth and synthesis of a secondary metabolite, berberine, in batch suspension culture ofThalictrum rugosum. The model was developed by representing the physiological state of the cell in terms of the activity and the viability, which can be estimated using the culture fluorescence measurement. In the proposed model, the cells were divided into three types; active-viable, nonactive-viable, and dead cells. The model was formulated in terms of cell growth (dry/fresh weight, activity, and viability), carbon source utilization (sucrose, glucose and fructose), and product formation (intracellular and extracellular berberine). The concept of cell expansion and the death phase were also included in this model to describe the sugar accumulation and the release of intracellular berberine into medium by cell lysis, respectively. The parameters used in this model were estimated based on the experimental results in conjunction with numerical optimization techniques. Satisfactory agreement between the model and experimental data was obtained. The proposed model could accurately predict cell growth and product synthesis as well as the distribution of the secondary metabolite between the cell and the medium. It is suggested that the proposed model could be extended as a useful framework for quantitative analysis of physiological characteristics in the other plant cell culture systems.  相似文献   

16.
Batch suspension cultures ofDigitalis lanata plant cell were performed to investigate the biotransformation of digitoxin.Digitalis lanata K3OHD plant cells were used to biotransform digitoxin into deacetyllanatoside C. A kinetic model was proposed to describe cell growth, substrate consumption, depletion of digitoxin, formation and depletion of digoxin and purpureaglycoside A, and formation of deacetyllanatoside C. The digoxin and purpureaglycoside A are intermediates of deacetyllanatoside C formation from digitoxin. Interactions between extracellular and intracellular compounds were considered. The proposed model could accurately predict cell growth, substrate consumption and product synthesis. And it can provide a useful framework for quantitative analysis of biotransformation in a plant cell culture system.  相似文献   

17.
The fate of 2,4,6-trinitrotoluene (TNT) and TNT transformation products in two aerobic enrichment cultures was investigated. Contaminant fate was assessed through analysis of TNT and its oxygen-stable aminated derivatives using capillary electrophoresis and by tracking the distribution of 14C-labeled products in either the dissolved, mineralized, or biomass fractions. TNT transformation products were generated by reduction with Fe(0), reduction by S2-, and transformation by Clostridium acetobutylicum and by Eichornia crassipies (water hyacinth). Enrichment cultures varied in the growth substrate and nitrogen source supplied. The dextrose-fed mixed culture (DMC) was enriched on dextrose with yeast extract providing nitrogen for growth, whereas the anthranilic acid-fed mixed culture (AMC) received anthranilic acid as its source of both energy and nitrogen. Each culture transformed TNT, but their product distributions varied. The DMC exhibited higher levels of biomass association, whereas the AMC produced higher levels of aminated nitrotoluenes and unidentified water-soluble products. Neither mineralized TNT to a significant degree. TNT disappearance was observed in all transformation systems, along with the formation of water-soluble products; however, formation of aminated nitrotoluenes was observed only in the sulfide systems. Neither aerobic culture was capable of mineralizing the TNT transformation products introduced, regardless of the transformation method used to prepare them. The distribution of products between the aqueous phase and the biomass did vary between cultures and was affected by the transformation system used.  相似文献   

18.
In most enzymatic reactions, batch or continuous, separation of the enzyme for reuse is difficult if not impossible. A process will be presented in which an Ultrafiltration membrane serves to separate the reaction products from the enzyme and the substrate. In this manner the enzyme may be retained and re-used. Furthermore, under these conditions, the enzyme need only be present in catalytic amounts regardless of the amount of product produced. Under proper operating conditions and proper ultrafiltration membrane selection, a pure solution of α-amylase from Bacillus subtilis may be retained with no loss in enzyme activity over a test period of 30 hr after steadystate has been achieved. In the presence of substrate, the membrane support and ultrafiltration cell serve as the reaction vessel for the hydrolysis of starch. The substrate is continuously pumped into the cell under constant ultrafiltration pressure. The di-, oligo-, and polysaccharides formed from the enzyme reaction then either pass through the membrane as products or are retained. The molecular weight distribution of the products is dependent on the nominal molecular weight cut-off of the membrane, absolute ultrafiltration pressure, enzyme-to-substrate ratio, temperature, and residence time of the substrate in the reactor. In addition to the partial hydrolysis of starch by α-amylase, some preliminary findings on the complete hydrolysis of starch by glucoamylase will also be presented. In these latter studies, the substrate may be completely hydrolyzed to glucose units.  相似文献   

19.
A fungal laccase from Trametes villosa (EC 1.10.3.2 p-phenoloxidase) was used to mediate the oxidation and cross-coupling of two para-dihydroxylated benzoic acid derivatives with 4-aminobenzoic acid. The incubation of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide and 4-aminobenzoic acid with laccase under oxygen conditions resulted in the formation of 2-(4′-carboxy-anilino)-N-(2″-hydroxyethyl)-3,6-dioxo-1,4-cyclohexadien-1-carboxamide as the main product (yield > 85%). When 2,5-dihydroxybenzoic acid methyl ester was a co-substrate of 4-aminobenzoic acid, 2-(4′-carboxy-anilino)-N-(2″-hydroxyethyl)-3,6-dioxo-1,4-cyclohexadien-1-carboxy methyl ester was produced (yield > 75%). Both products were N–C coupling dimers consisting of para-quinone and benzoic acid moieties. The formation of quinone structures in the presence of T. villosa laccase may be useful in pharmaceutical synthesis. Because of high product yields and low amount of by-products laccase of T. villosa seems to be a suitable enzyme among laccases acting at pH 5 for the synthesis of heterologous dimers.  相似文献   

20.
Summary A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native starch, resulted in complete degradation of native starch granules from potato, maize and wheat at a temperature of 37°C. Glucose was found as a major product. Production of maltose, maltotriose and maltotetraose was also observed. Native-starch-degrading activity (NSDA) could be selectively adsorbed on potato-starch granules, whereas soluble-starch-degrading activity (SSDA) remained mainly in solution. The use of such a starch-adsorbed enzyme preparation on native starch resulted in a completely changed product pattern. An increase in oligosaccharides concomitant with less glucose formation was observed. An increased conversion of soluble starch to maltopentaose was possible with this starch-adsorbed enzyme preparation. It is concluded that NSDA comes from -amylase(s) and SSDA from glucoamylase(s) and/or -glucosidase(s). Cultivation of B. firmus/lentus on glucose, maltose, or soluble starch resulted in substantially smaller quantities of (native) starch-degrading activity.Offprint requests to: D. J. Wijbenga  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号