首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uncI gene, the first gene of the unc operon, has been cloned into an expression vector carrying the lambda PRPL promoters in tandem orientation and the gene cI857 coding for the thermolabile repressor. Linkage of the uncI gene to an efficient ribosome binding site (the translational initiation region of the uncE gene) resulted in 10-20-fold increased gene expression. The i protein has been extracted from overproducing cells using chloroform/methanol and purified to homogeneity by ion exchange chromatography. Analyzing the products of the uncI gene encoded by different plasmids, we provide evidence that, in contrast to the previously reported data (Walker, J. E., Saraste, M., and Gay, N. J. (1984) Biochim. Biophys. Acta 768, 164-200), the chromosome-encoded i protein contains the N-terminal sequence Ser-Val-Ser-Leu-Val-Ser-Arg and has a molecular weight of 13,504.  相似文献   

2.
Gene 1 of bacteriophage T7 early region--the RNA polymerase gene--is very actively translated during the infectious cycle of this phage. A 29 base pair fragment of its ribosome binding site containing the initiation triplet, the Shine-Dalgarno sequence (S-D), 10 nucleotides (nt) upstream and 6 nt downstream of these central elements was cloned into a vector to control the expression of the mouse dihydrofolate reductase gene (dhfr). Although all essential parts of this translation initiation region (TIR) should be present, this fragment showed only very low activity. Computer analysis revealed a potentially inhibitory hairpin binding the S-D sequence into its stem base paired to vector-derived upstream sequences. Mutational alterations demonstrated that this hairpin was not responsible for the low activity. However, addition of 21 nt of the T7 gene 1 upstream sequence to the 29 base pair fragment were capable of increasing the translational efficiency by one order of magnitude. Computer analysis of this sequence, including nucleotide shuffling, revealed that it contains a highly unstructured region lacking mRNA secondary structures but with a hairpin at its 5' end, here formed solely by T7 sequences. There was not much difference in activity whether the mRNA included or lacked vector-derived sequences upstream of the hairpin. Such highly unstructured mRNA regions were found in all very efficiently expressed T7 genes without any obvious sequence homologies. The delta G values of these regions were higher, i.e. potential secondary structural elements were fewer, than in TIR of genes from E. coli. This is likely due to the fact that T7 as a lytic phage is relying for successful infection on much stronger signals which a cell cannot afford because of the indispensable balanced equilibria of its interdependent biochemical processes. When the 5' ends of efficient T7 gene mRNA are formed by the action of RNase III they generally start with an unstructured region. Efficiently expressed T7 genes within a polycistronic mRNA, however, always contain a hairpin preceding the structure free sequence. We suggest that the formation of this 5' hairpin is releasing enough energy to keep the unstructured regions free of secondary RNA structures for sufficient time to give ribosomes and factors a good chance for binding to the TIR. In addition, sequences further downstream of the start codon give rise to an additional increase in efficiency of the TIR by almost two orders of magnitude.  相似文献   

3.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

4.
5.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   

6.

Background  

The mRNA translation initiation region (TIR) comprises the initiator codon, Shine-Dalgarno (SD) sequence and translational enhancers. Probably the most abundant class of enhancers contains A/U-rich sequences. We have tested the influence of SD sequence length and the presence of enhancers on the efficiency of translation initiation.  相似文献   

7.
8.
The secondary structure of the Escherichia coli alpha mRNA leader sequence has been determined using nucleases specific for single- or double-stranded RNA. Three different length alpha RNA fragments were studied at 0 degrees C and 37 degrees C. A very stable eight base-pair helix forms upstream from the ribosome initiation site, defining a 29 base loop. There is evidence for base-pairing between nucleotides within this loop and for a "pseudo-knot" interaction of some loop bases with nucleotides just 3' to the initiation codon, forming a region of complex structure. A weak helix also pairs sequences near the 5' terminus of the alpha mRNA with bases near the Shine-Dalgarno sequence. Affinity constants for the translational repressor S4 binding different length alpha mRNA fragments indicate that most of the S4 recognition features must be contained within the main helix and hairpin regions. Binding of S4 to the alpha mRNA alters the structure of the 29 base hairpin region, and probably melts the weak pairing between the 5' and 3' termini of the leader. The pseudo-knot structure and the conformational changes associated with it provide a link between the structures of the S4 binding site and the ribosome binding site. The alpha mRNA may therefore play an active role in mediating translational repression.  相似文献   

9.
H Chen  M Bjerknes  R Kumar    E Jay 《Nucleic acids research》1994,22(23):4953-4957
The prokaryotic mRNA ribosome binding site (RBS) usually contains part or all of a polypurine domain UAAGGAGGU known as the Shine-Dalgarno (SD) sequence found just 5' to the translation initiation codon. It is now clear that the SD sequence is important for identification of the translation initiation site on the mRNA by the ribosome, and that as a result, the spacing between the SD and the initiation codon strongly affects translational efficiency (1). It is not as clear, however, whether there is a unique optimal spacing. Complications involving the definition of the spacing as well as secondary structures have obscured matters. We thus undertook a systematic study by inserting two series of synthetic RBSs of varying spacing and SD sequence into a plasmid vector containing the chloramphenicol acetyltransferase gene. Care was taken not to introduce any secondary structure. Measurements of protein expression demonstrated an optimal aligned spacing of 5 nt for both series. Since aligned spacing corresponds naturally to the spacing between the 3'-end of the 16S rRNA and the P-site, we conclude that there is a unique optimal aligned SD-AUG spacing in the absence of other complicating issues.  相似文献   

10.
S Loechel  J M Inamine    P C Hu 《Nucleic acids research》1991,19(24):6905-6911
The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation. We have inserted the translation initiation region of this gene in front of the Escherichia coli lacZ gene and shown that it is recognized by the translational machinery of E. coli; the signal operates in vivo at roughly the same efficiency as a synthetic Shine-Dalgarno sequence. The M. genitalium sequence was also used to replace the native translation initiation region of the cat gene. When assayed in E. coli, the M. genitalium sequence is equivalent to a Shine-Dalgarno sequence in stimulating translation of this mRNA also. Site-directed mutagenesis enabled us to identify some of the bases that comprise the functional sequence. We propose that the sequence UUAACAACAU functions as a ribosome binding site by annealing to nucleotides 1082-1093 of the E. coli 16S rRNA. The activity of this sequence is enhanced when it is present in the loop of a stem-and-loop structure. Additional sequences both upstream and downstream of the initiation codon are also involved, but their role has not been elucidated.  相似文献   

11.
Efficient expression in Escherichia coli (E. coli) of the human interferon-beta gene (IFN-beta) gene and of a chemically synthesized IFN-beta gene variant (506 base pairs; synIFN-beta) adapted to the E. coli codon usage, both fused to the E. coli atpE ribosome-binding site, is controlled either by primary sequence or by mRNA secondary-structure in the translational initiation region. High level expression of the natural human atpE/IFN-beta gene fusion is governed by the nucleotide composition preceding the initiator codon AUG. A single U----C exchange in the -2 or -1 position preceding the initiator codon AUG reduces the translational efficiency from 18% of total cellular protein to only 8% or 4%, respectively, while both U----C substitutions reduce IFN-beta expression below 1%. These sequence alterations interfere with efficient ribosome binding as revealed by toeprinting. They provide further evidence for the influence of the anticodon-flanking regions of tRNA(fMet) upon the initiation rate of translation. In contrast, translation of the synthetic variant atpE/synIFN-beta gene fusion is controlled by a moderately stable stem-loop structure (delta G = -4 kcal/mol; 37 degrees C) located within the coding region and overlapping the 30 S ribosomal subunit attachment site. That the stability of the hairpin interferes with the initiation of translation is inferred from site-directed mutagenesis and toeprint analyses. mRNA half-life in these variants is positively correlated with the rate of translation and involves two major endonucleolytic cleavage site 5'-upstream of the Shine-Dalgarno region.  相似文献   

12.
K Schneider  C F Beck 《Gene》1988,74(2):559-563
  相似文献   

13.
Most prokaryotic mRNAs contain within the 5' untranslated region (UTR), a Shine-Dalgarno (SD) sequence, which is complementary to the 3' end of 16S rRNA and serves as a major determinant for correct translational initiation. The tobacco chloroplast rps2 mRNA possesses an SD-like sequence (GGAG) at a proper position (positions -8 to -5 from the start codon). Using an in vitro translation system from isolated tobacco chloroplasts, the role of this sequence in translation was examined. Unexpectedly, the mutation of the SD-like element resulted in a large increase in translation. Internal and external deletions within the 5' UTR revealed that the region from -20 to -5 was involved in the negative regulation of translation. Scanning mutagenesis assays confirmed the above result. Competition assays suggested the existence of a trans-acting factor(s) involved in translational regulation. In this study, we discuss a possible mechanism for the negative regulation of rps2 mRNA translation.  相似文献   

14.
15.
16.
Translational riboswitches are bacterial gene regulatory elements found in the 5′-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.  相似文献   

17.
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3′ end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.  相似文献   

18.
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.  相似文献   

19.
The structural features of mRNA molecules that determine their relative translational rates are at present poorly defined. An early and potentially rate-limiting step in this process is the assembly of an intact 80S ribosome at the translational initiation codon. It is generally assumed that the efficiency of this reaction is controlled by structures in the 5' nontranslated region and in the immediate proximity of the AUG initiation codon. In this paper, we present an assay of initial monosome formation and measure the effects of hybridizing mRNA to complementary DNA fragments on the efficiency of this reaction. This hybridization serves to block specific regions of the mRNA from sequence-specific and intramolecular (secondary structure) interactions. We find that cDNAs that block the 5' nontranslated region, the initiation codon, or regions immediately 3' to the initiation codon markedly inhibit 80S ribosome attachment. These results are consistent with previous studies by ourselves and others which suggest that the introduction of secondary structures into this region can result in decreased translational efficiency. In addition, however, we note that cDNAs that hybridize to segments of the coding region significant distances (as many as several hundred bases) 3' to the initiation codon can also inhibit initial ribosome binding. This effect appears to be limited to duplexes within the mRNA coding region since a cDNA hybridizing exclusively within the 3' nontranslated region does not inhibit, and may actually stimulate, monosome formation. The results of this monosome formation assay therefore suggest that mRNA structures remote from the 5' terminus and initiation codon may also be important in determining the efficiency of translational initiation.  相似文献   

20.
Translational efficiency of an AUG, CUG, GUG, or UUG initiation codon was measured for the naturally leaderless cI mRNA from bacteriophage lambda. In a cI-lacZ translational fusion, only AUG supported a high level of expression; GUG supported a low level of expression, while UUG and CUG expression was barely above background levels. Addition of an untranslated lac leader and Shine-Dalgarno sequence to cI increased expression but still showed a dependence on an AUG for maximum expression. cI-lacZ mRNA with an AUG initiation codon showed a greater in vitro ribosome binding strength and a higher level of full-length in vivo mRNA, suggesting that the initiation codon is an important determinant of ribosome binding strength and translational efficiency for mRNA with or without the 5' untranslated leader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号