首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Nakagawa SH  Tager HS  Steiner DF 《Biochemistry》2000,39(51):15826-15835
An invariant residue, valine B12, is part of the insulin B-chain central alpha-helix (B9-B19), and its aliphatic side chain lies at the surface of the hydrophobic core of the insulin monomer in close contact with the neighboring aromatic side chains of phenylalanines (B24 and B25) and tyrosines (B26 and B16). This surface contributes to the dimerization of insulin, maintains the active conformation of the insulin monomer, and has been suspected to be directly involved in receptor recognition. To investigate in detail the role of the B12 residue in insulin-receptor interactions, we have synthesized nine analogues bearing natural or unnatural amino acid replacements for valine B12 by chemical synthesis of modified insulin B-chains and the subsequent combination of each synthetic B-chain with natural insulin A-chain. The receptor binding potencies of the synthetic B12 analogues relative to porcine insulin were determined by use of isolated canine hepatocytes, and the following results were obtained: isoleucine, 13%; allo-isoleucine, 77%; tert-leucine, 107%; cyclopropylglycine, 43%; threonine, 5.4%; D-valine, 3.4%; alpha-amino-n-butyric acid, 14%; alanine, 1.0%; and glycine, 0.32%. Selected analogues were also analyzed by far-UV circular dichroic spectroscopy and by absorption spectroscopy of their complexes with Co(2+). Our results indicate that beta-branched aliphatic amino acids are generally tolerated at the B12 position with specific steric preferences and that the receptor binding potencies of these analogues correlate with their abilities to form dimers. Furthermore, the structure-activity relationships of valine B12 are quite similar to those of valine A3, suggesting that valine residues at both A3 and B12 contribute to the insulin-receptor interactions in a similar manner.  相似文献   

3.
We have investigated (by use of semisynthetic insulin analogs and isolated canine hepatocytes) the role of invariant residue PheB24 in determining the affinity of insulin-receptor interactions. Our results confirm that replacement of PheB24 by D-Phe is not detrimental to ligand binding to receptor, show that D-Ala is well tolerated at position B24 (whereas Ala is not), and demonstrate that [GlyB24]insulin retains as much as 78% of the receptor binding potency of native insulin. Additional findings show that replacement of PheB24 by D-Pro or by alpha-aminoisobutyric acid results in analogs with severely decreased binding potency, and that the COOH-terminal domain containing residues B26-B30 plays a positive role in determining receptor binding potency in GlyB24-substituted insulin (whereas it plays a negative role in determining the receptor binding potency of its GlyB25-substituted counterpart). We interpret our results as identifying (a) a critical role for the insulin main chain near residue B24 in determining the affinity of receptor for ligand, (b) the importance of main chain flexibility in achieving a high affinity state of receptor-bound hormone, and (c) a potential interaction of the PheB24 side chain with receptor which initiates main chain structural changes in the natural hormone, but which does not itself confer affinity to ligand-receptor interactions.  相似文献   

4.
S H Nakagawa  H S Tager 《Biochemistry》1992,31(12):3204-3214
In order to evaluate the cause of the greatly decreased receptor-binding potency of the naturally occurring mutant human insulin Insulin Wakayama ([LeuA3]insulin, 0.2% relative potency), we examined (by the semisynthesis of insulin analogues based on N alpha-PheB1,N epsilon-LysB29-bisacetyl-insulin) the importance of aliphatic side chain structure at positions A2 and A3 (Ile and Val, respectively) in directing the interaction of insulin with its receptor. Analogues bearing glycine, alanine, alpha-amino-n-butyric acid, norvaline, norleucine, valine, isoleucine, allo-isoleucine, threonine, tert-leucine, or leucine at positions A2 or A3 were assayed for their potencies in competing for the binding of 125I-labeled insulin to isolated canine hepatocytes, as were analogues bearing deletions from the A-chain amino terminus or the B-chain carboxyl terminus. Selected analogues were also analyzed by far-UV CD and absorption spectroscopy of Co2+ complexes. Our results identify that (a) Ile and Val serve well at position A2, whereas residues with other side chains (including those with straight chains, alternatively configured beta-branches, or a gamma-branch) exhibit relative receptor-binding potencies in the range 1-5%; (b) greater flexibility is allowed side-chain structure at position A3, with Ile, allo-Ile, alpha-amino-n-butyric acid, and tert-Leu exhibiting relative receptor-binding potencies in the range 11-36%; and (c) simultaneous replacements at positions A2 and A3, and deletions of the COOH-terminal domain of the insulin B chain in related analogues, yield cumulative effects. These findings are discussed with respect to a model for insulin-receptor interactions that involves a structure-orienting role for residue A2, the direct interaction of residue A3 with receptor, and multiple separately defined elements of structure and of conformational adjustment.  相似文献   

5.

Background

The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues.

Methodology/Principal Findings

Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity.

Conclusions/Significance

We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.  相似文献   

6.
Previous studies have suggested that the COOH-terminal pentapeptide of the insulin B-chain can play a negative role in ligand-receptor interactions involving insulin analogs having amino acid replacements at position B25 (Nakagawa, S. H., and Tager, H. S. (1986) J. Biol. Chem. 261, 7332-7341). We undertook by the current investigations to identify the molecular site in insulin that induces this negative effect and to explore further the importance of conformational changes that might occur during insulin-receptor interactions. By use of semisynthetic insulin analogs containing amino acid replacements or deletions and of isolated canine hepatocytes, we show here that (a) the markedly decreased affinity of receptor for insulin analogs in which PheB25 is replaced by Ser is apparent for analogs in which up to 3 residues of the insulin B-chain have been deleted, but is progressively reversed in the corresponding des-tetrapeptide and des-pentapeptide analogs, and (b) unlike the case for deletion of TyrB26 and ThrB27, replacement of residue TyrB26 or ThrB27 has no effect to reverse the decreased affinity of full length analogs containing Ser for Phe substitutions at position B25. Additional experiments demonstrated that introduction of a cross-link between Lys epsilon B29 and Gly alpha A1 of insulin decreases the affinity of ligand-receptor interactions whether or not PheB25 is replaced by Ser. We conclude that the negative effect of the COOH-terminal B-chain domain on insulin-receptor interactions arises in greatest part from the insulin mainchain near the site of the TyrB26-ThrB27 peptide bond and that multiple conformational perturbations may be necessary to induce a high-affinity state of receptor-bound insulin.  相似文献   

7.

Background

Insulin analogues comprising acidic amino acid substitutions at position B10 have previously been shown to display increased mitogenic potencies compared to human insulin and the underlying molecular mechanisms have been subject to much scrutiny and debate. However, B10 is still an attractive position for amino acid substitutions given its important role in hexamer formation. The aim of this study was to investigate the relationships between the receptor binding properties as well as the metabolic and mitogenic potencies of a series of insulin analogues with different amino acid substitutions at position B10 and to identify a B10-substituted insulin analogue without an increased mitogenic to metabolic potency ratio.

Methodology/Principal Findings

A panel of ten singly-substituted B10 insulin analogues with different amino acid side chain characteristics were prepared and insulin receptor (both isoforms) and IGF-I receptor binding affinities using purified receptors, insulin receptor dissociation rates using BHK cells over-expressing the human insulin receptor, metabolic potencies by lipogenesis in isolated rat adipocytes, and mitogenic potencies using two different cell types predominantly expressing either the insulin or the IGF-I receptor were systematically investigated. Only analogues B10D and B10E with significantly increased insulin and IGF-I receptor affinities as well as decreased insulin receptor dissociation rates displayed enhanced mitogenic potencies in both cell types employed. For the remaining analogues with less pronounced changes in receptor affinities and insulin receptor dissociation rates, no apparent correlation between insulin receptor occupancy time and mitogenicity was observed.

Conclusions/Significance

Several B10-substituted insulin analogues devoid of disproportionate increases in mitogenic compared to metabolic potencies were identified. In the present study, receptor binding affinity rather than insulin receptor off-rate appears to be the major determinant of both metabolic and mitogenic potency. Our results also suggest that the increased mitogenic potency is attributable to both insulin and IGF-I receptor activation.  相似文献   

8.
Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.  相似文献   

9.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide.  相似文献   

10.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions.  相似文献   

11.
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.  相似文献   

12.
By the chemical synthesis of modified insulin B chains and the combination of the synthetic B chains with natural insulin A chains, we have prepared insulin analogs with natural and unnatural amino acid replacements of invariant residue LeuB6. Analogs have been investigated by reference to their potencies for interaction with the insulin receptor (as assessed by competition for 125I-labeled binding to isolated canine hepatocytes) and to their abilities to undergo the structural transitions that are characteristic of insulin self-aggregation (as assessed by the spectroscopic analysis of analog complexes with cobalt). Our results identify that (a) replacement of LeuB6 by glycine has nearly the equivalent effect as deletion of residues B1-B6 in decreasing receptor binding potency of the analog to only about 0.05% of that of insulin; (b) relative to the GlyB6 derivative, replacements that increase the relative hydrophobicity of the residue B6 side chain also increase the relative receptor binding potencies of the resulting analogs; (c) negative steric effects resulting from substitutions by valine, phenylalanine, and gamma-ethylnorleucine limit the potential for enhancing potency as the result of increased hydrophobicity; and (d) two analogs with disparate potency for receptor interaction (those with alanine and gamma-ethylnorleucine at position B6, analogs exhibiting about 1 and 48% of the potency of insulin, respectively) undergo the T6----R6 structural transition in the presence of Co2+ and phenol which is typical of insulin but result in hexameric complexes with greatly reduced stability. We conclude that leucine provides a closely determined best fit at insulin position B6, and we discuss our findings in terms of insulin conformations that may apply to the receptor-bound state of the hormone.  相似文献   

13.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

14.
We have used photoreactive insulin analogues to investigate as related processes, early structural modification of the receptor-bound insulin molecule and internalisation of the insulin-receptor complex. In isolated rat hepatocytes an initial modification of bound insulin leads to the generation of a molecular species unchanged in molecular weight but with reduced receptor and antibody binding affinities and altered electrophoretic mobility. Using photoreactive insulin analogues and density gradient cell fractionation the insulin receptor complex has been shown to undergo internalisation from the plasma membrane to a low density vesicular fraction, the endosome. No labelled material was found in lysosomal fractions after up to 10 min incubation at 37 degrees C. The degree of labelling of the endosome fraction depended on the position of the photoreactive group within the insulin molecule. The data suggest that before or during endocytosis, a small peptide is proteolytically cleaved from the C terminus of the insulin B chain.  相似文献   

15.
Shortened insulin with enhanced in vitro potency   总被引:5,自引:0,他引:5  
After it has been shown that removal of residues B26-B30 leaves insulin with full biological activity, provided the new C-terminus is amidated (Fischer et al. (1985) Biol. Chem. Hoppe-Seyler 366, 521-525), it is demonstrated here that it does not even preclude enhancement of potency. 7 analogues of des-(B26-B30)-insulin-B25-amide were prepared by trypsin-mediated semisynthesis, the replacements being D-PheB24; HisB25, D-PheB25, TrpB25, TyrB25; D-PheB24,B25 and D-PheB24, TyrB25. Mere conversion of the configuration of B25-phenylalanine reduces in vitro potency to 0.5%. If B25-phenylalanine is, however, substituted by histidine or tyrosine activity is increased to 310 or 230, respectively. According to the features common to these two side chains, the favourable effect should be due to their ring structure with balanced aromatic and polar or H-bonding properties, respectively. The results indicate that in the complete insulin molecule the C-terminal pentapeptide modulates the subtle role that residues B24 and/or B25 play in receptor binding and activity; its presence may have a positive or negative effect. The drastic differences in activity between the shortened analogues are in no ways reflected in the CD spectra which are very similar, though clearly different from that of native insulin.  相似文献   

16.
The C-terminal residue of the insulin A chain is invariant and kept as asparagine in all known insulin molecules from hagfish through birds to mammals. To get information on the role of this conserved residue, which is still unclear, the three-dimensional structures of four human insulin mutants, A21 Asn-->Gly, A21 Asn-->Asp, A21 Asn-->Ala, and A21 Asn-->Gln DesB30, were determined by X-ray crystallography. The four mutants crystallize separately into two kinds (rhombohedral and cubic) of crystals. In the refined structures, conformational correlation and coupled motion between the A chain C-terminal residue A21 and the B25 side chain was observed, in contrast to the nearly unchanged general structures as compared with the native insulin structures in their respective crystals. A detailed analysis suggests that residue A21 can affect insulin receptor binding by interaction with the B25 side chain and the B chain C-terminal segment to assist the B25 side chain rearranging into the 'active' conformation.  相似文献   

17.
The environment of both the hydrophilic and hydrophobic sides of alpha-helical delta-toxin are probed by tryptophanyl (Trp) fluorescence, when self-association occurs in solution and on binding to membranes. The fluorescence parameters of staphylococcal delta-toxin (Trp15 on the polar side of the amphipathic helix) and synthetic analogues with single Trp at position 5 or 16 (on the apolar side) were studied. The time-resolved fluorescence decays of the peptides in solution show that the local environment of their single Trp is always heterogeneous. Although the self-association degree increases with concentration, as shown by fluorescence anisotropy decays, the lifetimes (and their statistical weight) of Trp16 do not change, contrary to what is observed for Trp15. The first step of self-association is then driven by hydrophobic interactions between apolar sides of alpha-helices, whilst further oligomerization involves their polar side (Trp15) via electrostatic interactions. This is supported by dissociation induced by salt. For all self-associated peptides, the polarity of the Trp microenvironment was not significantly modified upon binding to phospholipid vesicles, as indicated by the small shifts of the fluorescence emission spectra and lifetime values. However, the relative populations of the lifetime classes vary with bound-peptide density similar to the rates of their global motions in bilayers or smaller particles. Quenching experiments by water or lipid-soluble compounds show changes of the orientation of membrane-inserted peptides, from probably dimers lying flat at the interface at low peptide density, to oligomers spanning the membrane and inducing membrane fragmentation at high peptide density.  相似文献   

18.
Nakagawa SH  Zhao M  Hua QX  Hu SQ  Wan ZL  Jia W  Weiss MA 《Biochemistry》2005,44(13):4984-4999
How insulin binds to its receptor is unknown despite decades of investigation. Here, we employ chiral mutagenesis-comparison of corresponding d and l amino acid substitutions in the hormone-to define a structural switch between folding-competent and active conformations. Our strategy is motivated by the T --> R transition, an allosteric feature of zinc-hexamer assembly in which an invariant glycine in the B chain changes conformations. In the classical T state, Gly(B8) lies within a beta-turn and exhibits a positive phi angle (like a d amino acid); in the alternative R state, Gly(B8) is part of an alpha-helix and exhibits a negative phi angle (like an l amino acid). Respective B chain libraries containing mixtures of d or l substitutions at B8 exhibit a stereospecific perturbation of insulin chain combination: l amino acids impede native disulfide pairing, whereas diverse d substitutions are well-tolerated. Strikingly, d substitutions at B8 enhance both synthetic yield and thermodynamic stability but markedly impair biological activity. The NMR structure of such an inactive analogue (as an engineered T-like monomer) is essentially identical to that of native insulin. By contrast, l analogues exhibit impaired folding and stability. Although synthetic yields are very low, such analogues can be highly active. Despite the profound differences between the foldabilities of d and l analogues, crystallization trials suggest that on protein assembly substitutions of either class can be accommodated within classical T or R states. Comparison between such diastereomeric analogues thus implies that the T state represents an inactive but folding-competent conformation. We propose that within folding intermediates the sign of the B8 phi angle exerts kinetic control in a rugged landscape to distinguish between trajectories associated with productive disulfide pairing (positive T-like values) or off-pathway events (negative R-like values). We further propose that the crystallographic T -->R transition in part recapitulates how the conformation of an insulin monomer changes on receptor binding. At the very least the ostensibly unrelated processes of disulfide pairing, allosteric assembly, and receptor binding appear to utilize the same residue as a structural switch; an "ambidextrous" glycine unhindered by the chiral restrictions of the Ramachandran plane. We speculate that this switch operates to protect insulin-and the beta-cell-from protein misfolding.  相似文献   

19.
Inactive conformation of an insulin despite its wild-type sequence.   总被引:3,自引:2,他引:1       下载免费PDF全文
The peptide group between residues B24 and B25 of insulin was replaced by an ester bond. This modification only in the backbone was meant to eliminate a structurally important H-bond between the amide proton of B25 and the carbonyl oxygen of A19, and consequently to enhance detachment of the C-terminal B-chain from the body of the molecule, exposing the underlying A-chain. According to a model derived from the effects of side-chain substitutions, main-chain shortening, and crosslinking, this conformational change is prerequisite for receptor binding. Contrary to the expectation that increased flexibility would increase receptor binding and activity, depsi-insulin ([B24-B25 CO-O]insulin) has turned out be only 3-4% potent. In search of an explanation for this observation, the solution structure of depsi-insulin was determined by two-dimensional 1H-NMR spectroscopy. It was found that the loss of the B25-A19 H-bond does not entail detachment of the C-terminal B-chain. On the contrary, it is overcompensated by a gain in hydrophobic interaction achieved by insertion of the Phe B25 side chain into the molecule's core. This is possible because of increased rotational freedom in the backbone owing to the ester bond. Distortion of the B20-B23 turn and an altered direction of the distal B-chain are consequences that also affect self-association. The exceptional position of the B25 side chain is thus the key feature of the depsi-insulin structure. Being buried in the interior, it is not available for guiding the interaction with the receptor, a crucial role attributed to it by the model. This seems to be the main reason why the structure of depsi-insulin represents an inactive conformation.  相似文献   

20.
Existing crystal structure data has indicated that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)) and its analogues bind the ligand-binding pocket (LBP) of the human vitamin D receptor in a very similar fashion. Because docking of a ligand into the LBP is a more flexible process than crystallography can monitor, we analyzed 1alpha,25(OH)(2)D(3), its 20-epi derivative MC1288, the two side-chain analogues Gemini and Ro43-83582 (a hexafluoro-derivative) by molecular dynamics simulations in a complex with the vitamin D receptor ligand-binding domain and a co-activator peptide. Superimposition of the structures showed that the side chain of MC1288, the first side chain of the conformation II of Gemini, the second side chain of Ro43-83582 in conformation I and the first side chain of Ro43-83582 in conformation II take the same agonistic position as the side chain of 1alpha,25(OH)(2)D(3). Compared with the LBP of the natural hormone MC1288 reduced the volume by 17%, and Gemini expanded it by 19%. The shrinking of the LBP of MC1288 and its expansion to accommodate the second side chain of Gemini or Ro43-83582 is the combined result of minor movements of more than 30 residues and major movements of a few critical amino acids. The agonist-selective recognition of anchoring OH groups by the conformational flexible residues Ala-303, Leu-309, and His-397 was confirmed by in vitro assays. In summary, variations in the volume of agonists lead to adaptations in the volume of the LBP and alternative contacts of anchoring OH-groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号