首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An insect high density lipoprotein, lipophorin, can be rapidly isolated from larval Manduca sexta (tobacco hornworm) hemolymph by single vertical spin density gradient ultracentrifugation. The two apolipoproteins (Mr = 245,000 and 78,000; designated apoLp-I and apoLp-II, respectively) were readily dissociated and separated in 6 M guanidine HCl by gel permeation chromatography. ApoLp-I and apoLp-II showed no immunological cross-reactivity on electrophoretic blots of sodium dodecyl sulfate-polyacrylamide gels. ApoLp-I and apoLp-II from lipophorin of adult M. sexta behaved identically to their larval counterparts. Amino acid compositions of larval apoLp-I and apoLp-II were similar except with respect to tryptophan and cysteine; apoLp-I contained 32 residues/mol of tryptophan (1.5 mol%) and 22 residues/mol (1.1 mol%) of cysteine; apoLp-II contained 2 residues/mol of tryptophan (0.2 mol%) and 14 residues/mol of cysteine (2.1 mol%). In double immunodiffusion tests, antiserum against apoLp-I or whole lipophorin strongly precipitated lipophorin, while antiserum against apoLp-II caused only minor precipitation. This indicates relatively greater exposure of apoLp-I to the aqueous environment.  相似文献   

2.
The hemolymph lipoprotein lipophorin has been isolated from third-instar Drosophila melanogaster larvae by a technique that involves homogenization of whole larvae in a medium containing protease inhibitors and purification of the lipoprotein by density gradient centrifugation. Drosophila lipophorin has a density of 1.16 g/ml and is composed of 62.5% protein, 23.1% phospholipid, 7.4% diacylglycerol, 5.4% triacylglycerol, 0.9% hydrocarbon, and 0.7% sterol. As is the case with other insect lipophorins, Drosophila lipophorin contains two apolipoproteins, apolipophorin-I (Mr ≈ 275,000) and apolipophorin-II (Mr ≈ 76,000). Drosophila apolipophorin-I does not crossreact with antibodies prepared against apolipophorin-I from Manduca sexta.  相似文献   

3.
1. Lipophorin was isolated from the haemolymph of adult tsetse fly, Glossina morsitans morsitans, by ultracentrifugation in a potassium bromide density gradient. 2. The tsetse fly lipophorin (Mr congruent to 600,000) has a density of congruent to 1.11 g/ml and consists of two apoproteins, apolipophorin-I (apoLp-I, Mr congruent to 250,000) and apolipophorin-II (apoLp-II, Mr congruent to 80,000), both of which are glycosylated as shown by staining with periodate-Schiff reagent. The protein complex is composed of 49% protein and 51% lipids. 3. The finding of lipophorin in tsetse fly haemolymph suggests that, although these flies primarily utilize proline for their energy needs, there is an active transport mechanism for the supply of lipid requirements.  相似文献   

4.
Lipophorin of the larval honeybee, Apis mellifera L   总被引:2,自引:0,他引:2  
Most insects have a major lipoprotein species in the blood (hemolymph) that serves to transport fat from the midgut to the storage depots in fat body cells and from the fat body to peripheral tissues. The generic name lipophorin is used for this lipoprotein. In larvae of the honeybee, Apis mellifera, a lipophorin has been found with properties that correlate well with those of the only other lipophorin reported for an immature insect, that of the tobacco hornworm, Manduca sexta. The honeybee lipophorin (Mr = 530,000) has a density of 1.13 g/ml, contains approximately 41% lipid and 59% protein, and contains two apoproteins, apoLp-I, Mr = 250,000 and apoLp-II, Mr = 80,000, both of which are glycosylated. The lipids consist predominantly of polar lipids, of which phospholipids and diacylglycerols represent 60% of the total. When the intact lipophorin is treated with trypsin, apoLp-I is rapidly proteolyzed, while apoLp-II is resistant, indicating a difference in exposure of the two apoproteins to the aqueous environment. Honeybee apoLp-II cross-reacts with antibodies to M. sexta apoLp-II, but not to anti-M. sexta apoLp-I. No cross-reactivity of honeybee apoLp-I to anti-M. sexta apoLp-I was observed.  相似文献   

5.
《Insect Biochemistry》1990,20(8):793-799
Twenty monoclonal antibodies raised against locust native lipophorin were screened by testing their capacity to inhibit diacylglycerol (DG) uptake from fat body by lipophorin in vitro. One of the monoclonal antibodies clearly inhibits the loading of DG by lipophorin from the fat body. This antibody cross reacts only with apolipophorin-II(apoLp-II), one of the two apoproteins of lipophorin. By using proteolytic apoLp-II fragments, we have shown that the epitope for the antibody against apoLp-II contains lysine. Furthermore, both the apoproteins, apoLp-I and apoLp-II, were almost equally labeled with biotin when the native lipophorin was incubated with modified biotin-reagent. These observations strongly suggest that apoLp-II, at least in part, is localized on the outer surface of lipophorin and may contribute to the lipid loading process from fat body.  相似文献   

6.
Biosynthesis of high density lipophorin (HDLp) was studied in larvae and adults of the migratory locust, Locusta migratoria. In an in vitro system, fat bodies were incubated in a medium containing a mixture of tritiated amino acids. Using SDS-PAGE and immunoblotting, it was shown that larval and adult fat bodies secreted both HDLp apoproteins, apolipophorin I (apoLp-I) and apolipophorin II (apoLp-II). Radiolabel was recovered in both apoproteins, indicative of de novo synthesis. The density of the fractions containing the apoproteins synthesized and secreted by larval and adult fat bodies was determined by density gradient ultracentrifugation. A radiolabeled protein fraction was found at density 1.12 g/ml. Using an enzyme-linked immunosorbent assay for detecting apoLp-I and apoLp-II, it was demonstrated that both apoproteins were present in this fraction, which had a density identical to that of circulating HDLp in hemolymph. Lipid analysis revealed that it contained phospholipid, diacylglycerol, sterol, and hydrocarbons. From these results it is concluded that the fat body of the locust synthesizes both apoLp-I and apoLp-II, which are combined with lipids to a lipoprotein particle that is released into the medium as HDLp.  相似文献   

7.
《Insect Biochemistry》1988,18(1):117-126
Flight activity or injection of the death's-head hawkmoth Acherontia atropos with locust synthetic adipokinetic hormone (AKH I) results in a dramatic increase in the concentration of hemolymph diacylglycerol which is carried by specific lipophorins. In resting hawkmoths diacylglycerols are associated with a high-density lipophorin (HDLp, density ∼1.13 g/ml) consisting of two major apolipophorins (apoLp-I and -II, mol. wt ∼240,000 and 70,000, respectively). During flight or after AKH injection the formation of a new low-density lipophorin is induced (LDLp, density ∼1.03 g/ml), exhibiting a much higher lipid loading and consisting of HDLp subunits and an additional subunit (apoLp-III, mol. wt approx. 20,000). This subunit is a regular constitutent of hemolymph proteins in resting hawkmoths and consists of two protein components with slightly different molecular weights. The component with the lowest molecular weight seems to be preferentially incorporated into the newly generated LDLp. In the resting situation the HDLp already contains some apoLp-III.In spite of some minor differences, the overall mechanism of lipophorin rearrangements upon flight activity in the hawkmoth appears to be very similar to the known systems established for both Locusta migratoria and Manduca sexta.  相似文献   

8.
Major hemolymph protein (MHP) was purified from larval hemolymph of Galleria mellonella by KBr density gradient ultracentrifugation, ion exchange chromatography (DEAE‐Trisacryl M), YM‐50 ultrafiltration and gel permeation chromatography (Sephadex G‐100). MHP is composed of two subunit (MHP‐1 and MHP‐2). The molecular weights of each subunit were determined (MHP‐1 = 86 kDa and MHP‐2 = 84 kDa). MHP is present in both hemolymph and fat body during developmental stages, indicating this protein is carrying out some functions different from other major protein such as storage protein and lipophorin.  相似文献   

9.
The identification, purification and characterization of a new postlarval specific hemolymph protein from Manduca sexta is described. Incorporation of [35S]methionine into Manduca sexta hemolymph proteins in vivo was investigated as a function of development. A major protein band of Mr ≈ 50,000 was highly labeled during the prepupal and adult stage but not in feeding larvae. This postlarval protein (PLP) was isolated from adult male hemolymph and its chemical and immunological properties determined. PLP is a basic protein (pI ~8.6). Electrophoresis under denaturing conditions reveals a subunit Mr ≈ 50,000 while the native protein has an apparent Mr ~ 85,000 by gel permeation chromatography. Anti-PLP serum recognized PLP but not other hemolymph proteins on immunoblots. In vitro translation of fat body mRNA followed by immunoprecipitation revealed that fat body is the site of PLP synthesis. Quantitation of PLP levels in hemolymph throughout development was performed and suggests PLP may play a role in adult development of M. sexta.  相似文献   

10.
Lipophorin was isolated from larvae of a root weevil, Diaprepes abbreviatus (Coleoptera: Curculionidae), using density gradient ultracentrifugation. D. abbreviatus lipophorin contained two apoproteins, apolipophorin-I (Mr = 226,000) and apolipophorin-II (Mr = 72,100) and had a density of 1.08. Relative to other larval lipophorins, D. abbreviatus lipophorin contained little cysteine (determined as cysteic acid) and methionine. Fluorescence spectroscopy of intrinsic tyrosine and tryptophan residues excited at 290 nm revealed a single broad emission peak at 330 nm. Upon denaturing and delipidating lipophorin in guanidine HCl, this peak resolved into two peaks with maxima at 305 and 350 nm. Excitation spectra suggested that the two peaks were due to tyrosine and tryptophan, respectively. Fluorescence quenching agents, iodide and acrylamide, were used to determine accessibility of tyrosine and tryptophan residues to the aqueous environment. Iodide, a polar quenching agent, did not quench fluorescent emission from native lipophorin; quenching by iodide increased to moderate levels when lipophorin was denatured in guanidine HCl. Acrylamide quenched the fluorescence of native lipophorin moderately and very efficiently quenched fluorescence of denatured lipophorin. No difference was observed between fluorescence quenching of denatured vs. denatured and delipidated lipophorin by either iodide or acrylamide.  相似文献   

11.
12.
The major insect hemolymph lipoprotein, lipophorin, was isolated from adults of eight insect species representing seven insect orders. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to compare their respective apoprotein components. In all species examined lipophorin was composed of at least two apoproteins, apolipophorin I (Mr ~ 250,000) and apolipophorin II (Mr ~ 78,000), and two species had a third apoprotein, apolipophorin III (Mr ~ 17,000). The density of each isolated lipophorin was determined from the refractive index of KBr following density gradient centrifugation. Immunoblotting with anti-larval Manduca sexta apolipophorin I and II of the apoproteins separated by SDS-PACE indicated cross reactivity between anti-M sexta apoLp-ll and apoLp-ll in all species tested. Anti-M sexta apoLp-l exhibited no cross reactivity for any species tested. Fluorescent lectin staining of the apoproteins separated on SDS-PAGE gels revealed the presence of covalently bound carbohydrate residues.  相似文献   

13.
We examined expression of the lipophorin (Lp) gene, lipophorin (Lp) synthesis and secretion in the mosquito fat body, as well as dynamic changes in levels of this lipoprotein in the hemolymph and ovaries, during the first vitellogenic cycle of females of the yellow fever mosquito, Aedes aegypti. Lipophorin was purified by potassium bromide (KBr) density gradient ultracentrifugation and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Polyclonal antibodies were produced against individual Lp apoproteins, apolipoprotein-I (apoLp-I) and apolipoprotein-II (apoLp-II), with molecular weights of 240 and 75 kDa, respectively. We report here that in the mosquito A. aegypti, Lp was synthesized by the fat body, with a low level of the Lp gene expression and protein synthesis being maintained in pre- and postvitellogenic females. Following a blood meal, the Lp gene expression and protein synthesis were significantly upregulated. Our findings showed that the fat body levels of Lp mRNA and the rate of Lp secretion by this tissue reached their maximum at 18 h post-blood meal (PMB). 20-Hydroxyecdysone was responsible for an increase in the Lp gene expression and Lp protein synthesis in the mosquito fat body. Finally, the immunocytochemical localization of Lp showed that in vitellogenic female mosquitoes, this protein was accumulated by developing oocytes where it was deposited in yolk granules.  相似文献   

14.
15.
A major serum protein was isolated from the hemolymph of larvae of the female tobacco hornworm, Manduca sexta, just prior to metamorphosis. After 3 or 4 days, this predominantly female-specific protein is rapidly cleared from the hemolymph and taken up and stored by the fat body. This larval serum protein was purified by density gradient ultracentrifugation, gel permeation, and ion-exchange chromatography. The purified protein exhibits a single band on native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chemical cross-linking with dimethylsuberimidate indicates a hexameric subunit arrangement for the native protein. The amino acid composition, relatively rich in methionine but poor in cysteine, was used to calculate a v = 0.75 cm3/g. Analytical ultracentrifugation experiments yielded S020,w = 16.9 S and D020,w = 3.23 X 10(-7) cm2/s. From these values Mr = 510,000, f/f0 = 1.22, and Stokes radius = 66.3 A were calculated. Immunoblotting experiments with anti-larval serum protein serum indicate a cross-reactivity with storage protein-1 of Bombyx mori. The amino acid composition and immunological data suggest that larval serum protein may be an example of a class of insect storage proteins distinct from the arylphorins, which are characterized by high content of aromatic amino acids.  相似文献   

16.
The biosynthesis of neutral fat-transporting lipoproteins involves the lipidation of their nonexchangeable apolipoprotein. In contrast to its mammalian homolog apolipoprotein B, however, insect apolipophorin-II/I (apoLp-II/I) is cleaved posttranslationally at a consensus substrate sequence for furin, resulting in the appearance of two apolipoproteins in insect lipoprotein. To characterize the cleavage process, a truncated cDNA encoding the N-terminal 38% of Locusta migratoria apoLp-II/I, including the cleavage site, was expressed in insect Sf9 cells. This resulted in the secretion of correctly processed apoLp-II and truncated apoLp-I. The cleavage could be impaired by the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (decRVKRcmk) as well as by mutagenesis of the consensus substrate sequence for furin, as indicated by the secretion of uncleaved apoLp-II/I-38. Treatment of L. migratoria fat body, the physiological site of lipoprotein biosynthesis, with decRVKRcmk similarly resulted in the secretion of uncleaved apoLp-II/I, which was integrated in lipoprotein particles of buoyant density identical to wild-type high density lipophorin (HDLp). These results show that apoLp-II/I is posttranslationally cleaved by an insect furin and that biosynthesis and secretion of HDLp can occur independent of this processing step. Structure modeling indicates that the cleavage of apoLp-II/I represents a molecular adaptation in homologous apolipoprotein structures. We propose that cleavage enables specific features of insect lipoproteins, such as low density lipoprotein formation, endocytic recycling, and involvement in coagulation.  相似文献   

17.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

18.
Lipid transfer particle (LTP) is present in hemolymph of the tobacco hornworm Manduca sexta. Biosynthesis of LTP, occurrence in hemolymph, and the role of LTP-apoproteins in the lipid transfer reaction were investigated using antibodies specific for LTP or for each of the apoproteins. In vitro protein synthesis followed by immunoprecipitation demonstrated that LTP is synthesized by the fat body and secreted into the medium. In contrast to apolipophorin III, an exchangeable apoprotein of lipophorin (the major lipid transport protein in hemolymph), apoLTP-III could not be detected free in hemolymph. LTP concentrations in the hemolymph were measured by a sandwich ELISA using a mouse monoclonal antibody against apoLTP-III as capturing antibody and rabbit polyclonal antibody against apoLTP-I as detecting antibody. LTP concentration increased during the late fifth instar larval stage, followed by a decrease in the wandering stage. Subsequently, LTP concentrations were strongly increased in hemolymph of adult moths. The role of the three apoproteins of LTP in the lipid transfer reaction was analyzed using apoprotein-specific antibodies. All three, apoLTP-I, -II, and -III, appeared to be important for lipid transfer activity, as shown by inhibition of lipid transfer by antibodies specific for each of the three apoproteins. © 1996 Wiley-Liss, Inc.  相似文献   

19.
J K Kawooya  M A Wells  J H Law 《Biochemistry》1989,28(16):6658-6667
The apolipoproteins of insect lipophorin were dissociated in guanidinium chloride and isolated by gel permeation chromatography. Over 98% of the total lipid in lipophorin was associated with apolipophorin I (apoLp-I), thus suggesting this apolipoprotein to be the lipid binding component of the particle. ApoLp-I was delipidated with ethanol/ether and solubilized in buffer that contained radioactive lysophosphatidylcholine ([3H]LPC) above the critical micellar concentration. Sonic irradiation of radioactive phosphatidylcholine ([14C]PC) with [3H]LPC-solubilized apoLp-I at a molar ratio of 318 resulted in reconstituted lipophorin (RLp-I). [3H]LPC was bound to fatty acid free bovine serum albumin and was separated from RLp-I by density gradient ultracentrifugation and gel permeation chromatography. Negatively stained RLp-I particles were quasispherical with an average radium of 55 A, and their overall morphology and secondary structure were similar to those of native hemolymph lipophorin. The RLp-I particle had a rho = 1.137 g/mL, a Mr approximately 5.2 X 10(5), and a [14C]PC:apoLp-I molar ratio of 308. From the compositional analysis, molecular size, trypsinization, and lipolysis with phospholipase A2, we concluded that each RLp-I particle contained one molecule of apoLp-I and a monomolecular layer of [14C]PC. When injected into the hemolymph of adult moths in vivo, RLp-I was loaded with lipid, as judged by a decrease in its density both in the presence and in the absence of adipokinetic hormone. The similarities in morphology and immunology of RLp-I and native lipophorin, together with the ability of RLp-I to load lipid, suggest that reconstituted lipophorins may serve as models to probe lipophorin structure and function.  相似文献   

20.
《Insect Biochemistry》1988,18(2):211-214
Manduca sexta larvae were raised on diets containing either 1.2% fat (control diet), 5.9% fat (high-fat diet) or on a fat-free diet. Insects raised on the control and high-fat diets did not differ significantly in body weight, whereas animals raised on the fat-free diet were significantly smaller. The fat content of the diet had no effect on the hemolymph concentration of lipophorin. During the larval period, lipophorin isolated from animals on the high-fat diet contained more lipid, and lipophorin isolated from animals on the fat-free diet contained less lipid than lipophorin isolated from control animals. However, lipophorin isolated from animals during the prepupal period had the same composition regardless of diet. Compared to controls, animals on the high-fat diet had a larger mass of fat body which contained more stored triacylglycerol, while animals on the fat-free diet had a smaller mass of fat body which contained less stored triacylglycerol. As the fat content of the diet was increased, the fatty acid composition of fat body triacylglycerols reflected more closely that of the dietary lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号