首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The human cranium recovered at Florisbad in 1932 is compared with other Sub-Saharan African hominid remains from Broken Hill, the Omo and Klasies River Mouth. The Florisbad frontal is very broad, but despite this breadth and differences in zygomatic form, there is a definite resemblance to archaic Homo sapiens from Broken Hill. There is also some similarity to both Omo I and Omo II, while fragmentary remains from Klasies River are more lightly built and hence more modern in appearance. These impressions are strengthened by measurement and statistical analysis, which demonstrates that Florisbad and Broken Hill are distant from recent African populations. Even if Florisbad is less archaic than the earlier (Middle Pleistocene?) hominid, it is not noticeably Bushman-like. New dates suggestive of early Upper Pleistocene antiquity also place Florisbad securely in a lineage containing Broken Hill, and there is no evidence to support special ties with any one group of living Africans.  相似文献   

2.
The partial cranium from Lake Ndutu, near Olduvai Gorge in northern Tanzania, has generally been viewed as Homo erectus, although points of similarity to H. sapiens have also been recognized. Bones of the vault are in fact quite thick, and the cranium is small. Length and breadth dimensions are comparable to those of earlier H. erectus from Koobi Fora and Ileret, and the Ndutu individual is more similar in size to O.H. 12 than to O.H. 9. Unfortunately, the facial skeleton and frontal bone are very incomplete, and little useful information can be obtained from these parts of the existing reconstruction. The parietals are also damaged, but the left temporal is more satisfactorily preserved, and the occiput is nearly complete. Occipital morphology, mastoid shape, and characteristics of the glenoid cavity and tympanic plate probably provide the best available guide to affinities of the Ndutu hominid. In many of these features the cranium resembles Broken Hill, Elandsfontein, and other African fossils referred to archaic H. sapiens. There are some similarities to modern humans also, but no ties to the Neanderthals of Europe. Allocation of Ndutu to an African subspecies of H. sapiens seems most appropriate, even if the pattern of relationships between such archaic populations and recent humans is still unclear.  相似文献   

3.
The distal half of a right human humerus (E.898), recovered ex situ in 1925 by Hrdli?ka at the Broken Hill Mine, Kabwe, Zambia, has figured prominently in assessments of Middle Pleistocene Homo postcranial variation and of the phylogenetic polarity and functional anatomy of Pleistocene Homo upper limb morphology. Reassessment of distal humeral features that distinguish modern human and some archaic Homo humeri, especially relative olecranon breadth and medial and lateral pillar thicknesses, confirm previous studies placing it morphologically close to recent humans, as well as possibly to Early Pleistocene Homo. However, it completely lacks stratigraphic context, and there is faunal and archeological evidence for human activity at Broken Hill from the Middle Pleistocene to the Holocene. Given its uncertain geological age and modern human morphology, the Broken Hill E.898 humerus should not be used in analyses of Pleistocene humans until it is securely dated. Am J Phys Anthropol 149:312–317, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
发现于埃塞俄比亚MiddleAwash地区Bodo地点距今60万年的人类头骨化石是迄今发现的最为古老和完整的非洲中更新世人类化石。由于Bodo头骨化石在形态特征上兼有直立人与智人的特点,多年来学术界对其分类地位一直存在争议。Rightmire认为Bodo头骨化石与BrokenHill及Petralona等在分类上属于古老型智人的中更新世人类更为接近,是非洲直立人向古老型智人过渡的代表。至少在距今60万年的中更新世早期直立人向古老型智人转变的成种事件在非洲就已经发生。以Bodo头骨为代表的一批更新世中期非洲和欧洲人类化石构成了可能是后期人类祖先的人属海德堡种。这些观点导致了近年学术界对古老型智人在非洲及欧亚出现时间以及更新世中期非洲和欧亚地区古人类相互之间演化关系的关注。基于这样的背景,本文对年代与Bodo化石接近的周口店直立人头骨特征与Bodo头骨的相似及差异表现情况进行了对比研究。结果发现Bodo头骨在一系列特征上与周口店直立人相似,同时在包括颅容量在内的其它一些特征上呈现出后期智人的特点,但总体形态上似乎与直立人更为相似。作者认为尽管这种进化上的镶嵌现象在中国古人类化石记录上也广泛存在,但由于中国人类化石标本在年代上的不确定性,目前还没有可靠的证据说明这种集直立人与智人化石特征为一体的镶嵌性在中国古人类化石出现的时间接近或早于非洲。考虑到中国与非洲直立人生存年代的巨大差异及人类演化的不同步或地区间差异,具有较多后期人类特征表现的人类首先出现在非洲是完全可能的。根据这些研究对比,作者就人类演化的镶嵌现象、更新世中期非洲与亚洲地区人类演化上的差异等问题进行了讨论。  相似文献   

5.
The morphology and affinities of early and middle Pleistocene Homo erectus in East Asia have been explored since the late nineteenth century. A fragmentary hominid cranium (Nanjing no.1) recovered in Tangshan near Nanjing, China bears directly on these issues. In the present study, the morphological features of Nanjing no.1 are described and compared with Homo erectus from both Eurasia and Africa. Our results indicate that this middle Pleistocene hominid fossil should be referred to as Homo erectus. The sharing of typical Homo erectus features with African and European counterparts demonstrates that Homo erectus is a widely distributed lineage that evolved during the million years after its Pliocene origins. The differences between Nanjing no.1 and Zhoukoudian suggest certain level of regional variation in East Asian Homo erectus.  相似文献   

6.
A fragmentary hominid cranium with teeth, specimen L.894-1, dating from 1.84 m.y. BP in the Shungura Formation at Omo, is described. From its dental and cranial morphology and because of similarities to Olduvai Hominids 24 and 13 and Sangiran 4, among others, it is concluded that the specimen represents a member of an early species of the genus Homo (Homo habilis or Homo modjokertensis). The specimen shows approximal grooving on the premolars, pre-mortem chipping of the molar enamel, foramina ovale and spinosum divided by the sphenosquamosal suture, limited pneumatization of the mastoid region, and a possible interparietal bone. Sedimentological, ostracod, pollen, macrofloral, and taphonomic data indicate that the paleo-environmental context was a savanna/grassland or savanna woodland on the margin of a saline lake.  相似文献   

7.
The Upper Pleistocene localities of Aduma and Bouri have yielded hominid fossils and extensive Middle Stone Age (MSA) archaeological assemblages. The vertebrate fossils recovered include parts of four hominid crania from Aduma and a complete right parietal from Bouri. Archaeological associations and radiometric techniques suggest an Upper Pleistocene age for these hominids. The more complete cranium from Aduma (ADU-VP-1/3) comprises most of the parietals, the occipital, and part of the frontal. This cranium is compared to late Middle and Upper Pleistocene hominid crania from Africa and the Middle East. The Aduma cranium shows a mosaic of cranial features shared with "premodern" and anatomically modern Homo sapiens. However, the posterior and lateral cranial dimensions, and most of its anatomy, are centered among modern humans and resemble specimens from Omo, Skhul, and Qafzeh. As a result, the Aduma and Bouri Upper Pleistocene hominids are assigned to anatomically modern Homo sapiens.  相似文献   

8.
Changes in pelvic shape in human ontogeny and hominid phylogeny suggest that the heterochronic processes involved differ greatly from the neotenic process traditionally described in the evolution of the skull. The morphology of 150 juvenile and adult pelves of African apes, 60 juvenile and adult pelves of modern humans, two adult pelves and a juvenile hip bone of australopithecines (Sts 14, AL 288, MLD 7) was studied. Multivariate results, ontogenetic allometries, and growth curves confirm that the pelvic growth pattern in humans differs markedly from those of the African apes. The results permit the following conclusions. First, the appearance of a new feature (acetabulo-cristal buttress and cristal tubercle) at the time of human birth allows the addition of traits, such as the attainment of a proportionally narrower pelvis, with more sagittally positioned iliac blades. Pelvic proportions and orientation change progressively in early childhood as bipedalism is practiced. Other changes in pelvic proportions occur later with the adolescent growth spurt. Second, comparison of juvenile and adult australopithecines to modern humans indicates that 1) some pelvic traits of adult Australopithecus resemble those of neonate Homo; 2) the pelvic growth of Australopithecus was probably closer to that of apes, than to that of humans; and 3) prolonged growth in length of hindlimb and pelvis after sexual maturity seems to be a unique feature of Homo. The position of the acetabulo-cristal buttress and of the cristal tubercle on the ilium are similar in adult Australopithecus and neonate Homo suggesting that this feature may have been displaced later during hominid evolution. Progressive displacement of the acetabulo-cristal buttress on the ilium occurs both during hominid evolution (from Australopithecus to Homo sapiens) and human growth (from neonate to adult). This suggests peramorphic evolution of the pelvic morphology of hominids combining three processes of recapitulation (pre-displacement, acceleration and time hypermorphosis). The results lend credence to the hypothesis that no single heterochronic process accounts for all human evolutionary change; rather this reflects a combination of relative changes in growth rhythm and duration, including other perturbations, such as the appearance of new morphological features. Am J Phys Anthropol 105:441–459, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Understanding of the early stages of hominid evolution prior to 1925 was based primarily on comparative morphological evidence derived from extant primates. With the publication of Australopithecus by Dart in 1925 and subsequent research in South Africa, new possibilities for empirical assessment of early hominid evolutionary history were opened. It was Gregory's work, with Hellman, reported at the first meeting of the AAPA in 1930, that convinced many workers of the hominid status of Australopithecus. The debunking of Eoanthropus as a Pliocene hominid, far from having a totally negative effect, showed that cranial expansion had occurred after bipedalism in hominid evolution, demonstrated that chemical dating had come of age, and in a broader sense, had underlined that phylogenetic hypotheses are falsifiable by recourse to the evidence. The input of biological sciences into early hominid studies, as exemplified by Washburn's “new physical anthropology,” reduced taxonomic diversity and focused attention on paleoecology and behavior. The development of the multidisciplinary approach to field research, pioneered by L. Leakey and brought to fruition by Howell, was of fundamental importance in accurately dating and understanding the context of early hominids. Archaeology, primatology, comparative and functional morphology, and morphometrics have contributed substantially in recent years to a fuller understanding of early hominid evolution. American granting agencies have heavily supported early hominid research but patterns of funding have not kept pace with the change from research based largely on individualistic enterprise to multidisciplinary research projects. Future early hominid research, if funding is available, will likely be directed toward investigating temporal and geographic gaps now known in the fossil record and in more rigorous and multidisciplinary investigations of early hominid behavior.  相似文献   

10.
Over 200 hominid specimens were recovered by the International Omo Expedition of 1967–1976. Despite the fragmentary nature of this primarily dental collection, these hominid remains represent a major body of evidence about hominid evolution in eastern Africa during the 2–3 myr time period. Our analysis of the Omo dental collection is based on a large comparative sample of 375 quantifiable mandibular postcanine teeth of A. afarensis, A. africanus, A. aethiopicus, A. boisei, A. robustus, and early Homo. A total of 48 isolated mandibular premolars and molars of the Omo collection spanning the 2–3 myr time period is sufficiently preserved to allow reliable serial allocations and intertaxon comparisons and is the object of study in this paper. We present taxonomic identifications of these teeth and seven other mandibular specimens preserving tooth crowns. Metric analyses of this study include cusp area and crown shape variables taken on occlusal view diagrams. Nonmetric analyses were based on simultaneous observations of all relevant material to ensure accuracy of categorical evaluations. First, a combined metric and morphological evaluation was conducted to allocate each Omo tooth to either robust or nonrobust categories. Further taxonomic affinities were then examined. Our results indicate that nonrobust and robust lineages cooccur by circa 2.7 myr. We consider the Shungura robust specimens from Members C through F to represent A. aethiopicus. A significant phenetic transformation occurs at circa 2.3 myr, with the mosaic emergence of the derived A. boisei morphology across Member G times. Characterization of the East African nonrobust lineage is more difficult because of the comparatively subtle morphological differences seen among the dentitions of A. afarensis, A. africanus, and early Homo. The earlier Members B and C nonrobust specimens are difficult to evaluate and are considered indeterminate to genus or species. Both molars and premolars from Members E through G exhibit phenetic similarities to the early Homo condition and are considered as aff. Homo sp. indet. At present, there is no indication of multiple species in the Omo nonrobust sample at any time horizon. The 2–2.4 myr Omo nonrobust specimens exhibit some similarities to the stated Homo “rudolfensis” condition in size and morphology and are likely to represent the ancestral condition of the genus Homo. The bearing of these results on interpretations of early hominid evolution and diversification is considered. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Patterns of human evolution in the Middle Pleistocene remain poorly understood. There is general consensus that by the onset of this time period, populations ofHomo erectus were dispersed from Africa into Eurasia, including the Far East. In the western part of this range (perhaps in Africa),Homo erectus then produced a daughter lineage exhibiting more advanced characters of the face, braincase and cranial base. How this new species should be defined is currently debated. In my view, fossils from sites such as Bodo and Broken Hill in Africa may be lumped with material from earlier Middle Pleistocene localities in Europe. Such a taxon is appropriately namedHomo heidelbergensis. Whether the hypodigm should be extended to include fossils from China is another question. In any case, this group of hominids is plausibly ancestral to both the specialized Neanderthals of Europe and more modern humans of the later Middle Pleistocene.  相似文献   

12.
The Lantian fossil hominid cranium from Southern Shensi Province, China, provides the earliest record of Homo erectus in northern east Asia, and is morphologically the most primitive specimen in the entire world. Importantly, the Kungwangling Lantian cranium (calvarium plus face), with associated stone tools in good geologic and paleontological context, is demonstrably both earlier and more primitive than the Choukoutien I remains. Faunal and palynological evidence support a mid-Mosbachium equivalent age (some 700,000 years). These facts are not recognized in the original Chinese reports. The Chenchiawo Lantian mandible, like the Choukoutien I remains, is attributable to the Holstein-equivalent in China (some 300,000 years ago), and therefore should no longer be temporally associated with the Kungwangling Lantian cranium. However, that the mandible may be morphologically associated with either calls attention to the relative independence of the mandible in human evolution. A comparative study of some modern Mongoloid populations in which very large mandibles may or may not be associated with a scaphoid keel or sagittal elevation depending upon the size and shape of the cranium demonstrates the relative autonomy of the mandible. Continuing selection pressure for a masticatory complex with large jaws provides another point of continuity between East Asian fossil and modern Mongoloid hunting populations such as Eskimos and Aleuts. A number of morphological features of the cranium, especially vault thickness, cranial capacity and reinforcement system, conform to expectation and confirm a general trend of reduction in vault thickness and reinforcement system with increase in cranial capacity over time within the single human species.  相似文献   

13.
A detailed study has been made of the oldest South African Upper Pleistocene hominid remains found in Acheulian context in a well-stratified sealed cave deposit, the Cave of Hearths, Makapansgat, Northern Transvaal. Possibly 55,000 years of age, the remains comprise a juvenile right mandibular body with teeth, and part of a right radius. The mandible is highly robust, markedly prognathous, has a slight to moderate bony chin, an appreciable planum alveolare, a low supraspinous foramen, large alveolar part with big tooth roots, parallel upper and lower borders, a superior transverse torus and poorly developed genial apophysis. The teeth are fairly large, narrow and elongate; M2 is smaller than M1; both molars have a +5 cusp pattern, and the first molar shows moderate taurodontism. There is good evidence that the jaw shows congenital lack of M3: after the Chinese Lantian jaw, this is the second oldest hominid mandible and the first African fossil man with this feature. The radius has a relatively large head atop a disproportionately narrow neck; marked angulation of neck on shaft; and a strongly developed bicipital tubercle. The remains show a cluster of features which ally them with African Neandertaloids and earlier hominids of N.W. Africa. These geographically widespread African remains may represent a transitional population between H. erectus and H. sapiens neanderthalensis. This population has been called by Campbell, this author and others H. sapiens rhodesiensis (after the first-discovered specimen from Broken Hill): to this taxon the Cave of Hearths bones are tentatively assigned.  相似文献   

14.
Computer generated three-dimensional stereolithographic models of middle Pleistocene skulls from Petralona and Broken Hill are described and compared. The anterior cranial fossae of these models are also compared with that of another middle Pleistocene skull, Arago 21. Stereolithographic modelling reproduces not only the outer surfaces of skulls, but also features within the substance of the bones, and details of the internal braincase. The skulls of Petralona and, to a somewhat lesser degree, Broken Hill are extremely pneumatized. Previously undescribed features associated with pneumatization are detailed, along with their possible functional significance, polarity, and potential for understanding hominid cranial variation. Petralona and Broken Hill also exhibit a dramatic suite of cerebral features that is probably related to extensive pneumatization of the skull, namely frontal lobes that are tilted and located behind rather than over the orbits, laterally flared temporal lobes, marked occipital projection, and basal location of the cerebellum. Comparison of the anterior cranial fossae of Petralona, Broken Hill, and Arago 21 suggests that external resemblance of skulls may not always correlate with endocranial similarity. We believe that stereolithographic reconstructions have the potential for helping to resolve difficult questions about the origins of Neanderthal and anatomically modern people.  相似文献   

15.
16.
A quantitative analysis that employs randomization methods and distance statistics has been undertaken in an attempt to clarify the taxonomic affinities of the partial Homo cranium (SK 847) from Member 1 of the Swartkrans Formation. Although SK 847 has been argued to represent early H. erectus, exact randomization tests reveal that the magnitude of differences between it and two crania that have been attributed to that taxon (KNM-ER 3733 and KNM-WT 15000) is highly unlikely to be encountered in a modern human sample drawn from eastern and southern Africa. Some of the variables that differentiate SK 847 from the two early H. erectus crania (e. g., nasal breadth, frontal breadth, mastoid process size) have been considered to be relevant characters in the definition of that taxon. Just as the significant differences between SK 847 and the two early H. erectus crania make attribution of the Swartkrans specimen to that taxon unlikely, the linkage of SK 847 to KNM-ER 1813, and especially Stw 53, suggests that the Swartkrans cranium may have its closest affinity with H. habilis sensu lato. Differences from KNM-ER 1813, however, hint that the South African fossils may represent a species of early Homo that has not been sampled in the Plio-Pleistocene of eastern Africa. The similarity of SK 847 and Stw 53 may support faunal evidence which suggests that Sterkfontein Member 5 and Swartkrans Member 1 are of similar geochronological age. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The skull ofHomo antiquus Ferguson, 1984, represented by cranial remains of a fossilized skeleton, A.L. 288-1, from the Plio/Pleistocene of Hadar in Ethiopia, is reconstructed and the procedure described. Re-evaluation of the skull shows that it is apparently the smallest, normal, unequivocal hominid skull known; and that its cranial morphology is not Australopithecine, but Hominine.  相似文献   

18.
The human biologist usually considers ecology of recent humanity. This essay explores the question of whether the human biologist specialising in the ecology of living peoples has anything to learn from the palaeo-anthropologist, studying ancient hominids andtheir adaptive mechanisms over a deep time dimension. Since the Hominidae are under discussion, the definition of the hominids is reviewed. Historically, three phases are recognised. A rethinking of the classification of the hominoids has become necessary for the old and classical systematics, which divided this superfamily into the Hominidae and the Pongidae, is now outmoded. Since no consensus on such a re-classification has yet been reached, the author adheres to the classical system for the time being. The Hominidae emerged between about 8 and 5 million years ago. At that time, Africa was subject to major cooling and aridification and considerable changes in the flora and fauna were occurring. Wet forests were retreating, savanna was spreading and the animals of Africa were undergoing many changes, partly by faunal interchange with Asia following the drying up of the Mediterranean, and partly by autochthonous evolution among the pre-existing species of the continent. The Hominidae could well have emerged from the striking environmental modifications of this late Miocene phase. Critical changes occurred in hominid evolution between 3 and 2 million years before the present. The pre-existing speciesAustralopithecus africanus acquired the form of a postulated derivedA. africanus; the hominid lineage underwent cladogenetic splitting into robust and hyper-robust australopithecines and the genusHomo; Homo babilis appeared; stone tools are first found in the archaeological record; spoken language seems to have been acquired. These sensational events, within the space of one million years, took place against the background of conspicuous changes in the climate and physical geography of Africa, the flora and non-hominid fauna. Mankind became increasingly dependent upon stone culture. Hence a new element was added to the range of modes of adjustment, an element which must have greatly increased the ecological flexibility of the hominids. From the end of the Pliocene era onwards, culture should be seen as a constituent of man's environment and, at the same time, a highly advantageous component of human adaptational processes. In later and recent mankind, it may be difficult to extricate the respective roles of biological, social and physical factors, on the one hand, and cultural aspects on the other, as mechanisms and facilitators of adaptation to diverse econiches.  相似文献   

19.
The relationship between breadth and height of the mandibular corpus has been investigated in a sample of 77 hominid mandibles. An interspecific allometric increase in robusticity with size occurs between four taxonomic subgroups of Australopithecus, but subgroups of Homo vary in robusticity while differing little in size. Within taxonomic subgroups, variation in breadth is not significantly related to variation in height among the “gracile” australapithecines; however, it is isometrically related to height in the “robust” australopithecines and bears an allometric relationship to height in Homo. Thus, robusticity, in conjunction with size, may provide a useful indicator of the taxonomic affinities of hominid mandibles.  相似文献   

20.
Abstract

The presence of large numbers of micromammalian remains near the Homo rhodesiensis (now H. heidelbergensis or H. sapiens) type cranium from the Broken Hill Mine near Kabwe was noted when it was discovered. Most of the remains seem to have been lost but a small sample was preserved in the palaeontology collections at the Natural History Museum, London. Over the years, this sample received preliminary inspections that resulted in various published and unpublished reports or identifications, copies of which were kept with the material. The unpublished reports are reproduced to place them on record and to complement the more complete annotated systematic list for the site now given. The present paper collates previous identifications, adds some previously unrecorded taxa and updates the taxonomy to conform to current thinking. The partial nature of the sample prevents a detailed interpretation of environmental conditions at the time of accumulation and there remains no direct dating of the site. However, the micromammals suggest that the environment at the time of deposition was much as it would have been before mining and other human activities altered the vegetation, which may imply interglacial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号