首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal transduction pathways in guinea pig sperm   总被引:2,自引:0,他引:2  
Trifluoperazine (TFP), the antagonist of calmodulin (CaM). significantly stimulated the capacitation and acrosome reaction of guinea pig spermatozoa at the concentration of 10-100μmol/L, independent of the external Ca2+. Forskolin, dbcAMP and caffeine evidently promoted the occurrence of acrosome reaction of spermatozoa at early capacitation stage (5 h) in nonsynchronous system but not in synchronous system. If the spermatozoa were capacitated for 15 h in synchronous system, the above three drugs significantly stimulated acrosome reaction in a Ca2+-independent manner. Protein kinase C activators, i.e. phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDB) did not influence the occurrence of acrosome reaction of spermatozoa at early capacitation stage, but significantly increased the acrosome reaction rate in capacitated spermatozoa in a Ca2+-independent manner. In contrast. PKC inhibitor staurosporine significantly inhibited the occurrence of acrosome reaction.  相似文献   

2.
Heavy meromyosin-binding filaments in the mitotic apparatus of mammaliam cells   总被引:12,自引:0,他引:12  
Guinea pig spermatozoa fail to fertilize eggs in Ca2+-free media primarily because of specific inhibition of the acrosome reaction and activation of the spermatozoa. In Ca2+-free media the spermatozoa undergo capacitation at the same rate as in Ca2+-containing media, but are arrested in the capacitated state. If Ca2+ is made available after the spermatozoa have reached the capacitated state, the spermatozoa immediately undergo the acrosome reaction and activation. The minimum concentration of Ca2+ necessary for the initiation of the acrosome reaction and activation is about 0.2 mM. Mg2+ cannot substitute for Ca2+ in initiating these processes. Possible mechanisms by which Ca2+ triggers the acrosome reaction and activation of guinea pig spermatozoa are discussed.  相似文献   

3.
Using a semi-chemically defined medium, the requirement of extracellular Ca2+ for survival, capacitation, and acrosome reaction of spermatozoa as well as various stages of fertilization in the hamster was studied. A Ca2+-deficient environment is unfavorable for long-term survival of spermatozoa. Sperm capacitation may occur in Ca2+-deficient media, but not as efficiently as in normal media. The acrosome reaction definitely requires extracellular Ca2+. Other processes or phenomena that require extracellular Ca2+ are initiation and maintenance of hyperactivated motility of spermatozoa, penetration of acrosome-reacted spermatozoa into the zona pellucida, fusion of the spermatozoa with eggs, and the development of pronuclear eggs into two-cell embryos. Extracellular Ca2+ is apparently unnecessary for the attachment of spermatozoa to the zona and egg surfaces, decondensation of the sperm nucleus, and the development of sperm and egg pronuclei within the egg. These results were compared with data obtained in other species such as the sea urchin, mouse, rat and guinea pig.  相似文献   

4.
The membrane mobility agent A2C accelerates the onset of the acrosome reaction of guinea pig spermatozoa by promoting capacitation. Spermatozoa incubated in a suspension of A2C particles in Ca2+-free medium for one hour undergo a synchronous, rapid acrosome reaction upon the addition of Ca2+. These acrosome-reacted spermatozoa are capable of fertilization as assessed by their ability to penetrate (fuse with) zona-free hamster eggs. The disulfide-reducing agent, dithiothreitol (DTT) inhibits A2C-mediated capacitation. It also blocks fertilization of zone-free eggs by acrosome-reacted spermatozoa by preventing attachment of the spermatozoa to the egg plasma membrane. The mode of A2C action on spermatozoa is compared to that of A2C-induced fusion in somatic cells. The similarity of the molecular events in the sperm membrane during capacitation and the acrosome reaction to these in other fusion events is pointed out. Inhibition of capacitation by DTT points to the importance of membrane and/or submembrane proteins and thiol groups in this process. Oxidation of sperm membrane SH groups may play an important role in in vivo capacitation.  相似文献   

5.
The effects of Ca2+ channel antagonists on the motility and acrosome reaction of guinea pig spermatozoa were examined by incubating the spermatozoa continuously in Ca2+-containing capacitating media with 10?6 M to 10?4 M antagonist. Antagonists tested were four voltage-gated Ca2+ channel antagonists (verapamil, nifedipine, nimodipine, and FR–34235) and two ligand-gated channel antagonists (NaNO2 and Na-nitroprusside). None of these antagonists could block the acrosome reaction. Instead, three antagonists (verapamil, nimodipine, and FR-34235, each at 10?4 M) accelerated the onset of the acrosome reaction with a subsequent decrease in sperm motility. Nifedipine and Na-nitroprusside at the same concentration caused a complete loss of sperm motility by 4 hr of incubation with no substantial effect on the rate of acrosome reaction. The detrimental effect of antagonists on the motility of spermatozoa appears to be due to a direct, Ca2+-independent, membrane-perturbing action of the reagents. The acrosome reaction was not inhibited when guinea pig spermatozoa were precapacitated in Ca2+-free medium (with a low concentration of lysolecithin) in the continuous presence of antagonists. An acceleration of the onset of the acrosome reaction by verapamil (10?4 M) was also demonstrated in the golden hamster. These results may be interpreted as indicating that the entry of extracellular Ca2+ into spermatozoa, which triggers the acrosome reaction of guinea pig and hamster spermatozoa, is not mediated by Ca2+ channels. This is in marked contrast with the case reported in invertebrate spermatozoa. Possible mechanisms by which some of the antagonists stimulate the acrosome reaction and affect the motility of mammalian spermatozoa are discussed.  相似文献   

6.
After capacitation of guinea pig spermatozoa in vitro, the plasma membrane was mechanically separated from the spermatozoa in the presence or absence of HgCl2 and subsequently isolated by density gradient centrifugation. Examination of the spermatozoa by electron microscopy after homogenization in the presence of HgCl2 revealed that plasma membrane was removed only from the acrosomal region and remained predominately intact posterior to the equatorial segment of the sperm head, as well as the midpiece and tail. In comparison, spermatozoa homogenized under similar buffer conditions but in the absence of HgCl2 lose the large apical segment of the acrosome and the plasma membrane is removed essentially from the entire cell. If spermatozoa were homogenized in the absence of Hg2+, analysis of plasma membrane phospholipid composition revealed a complete loss of lysophosphatidylcholine (LPC) from the plasma membrane after incubation of spermatozoa in minimal capacitating medium (MCM-PL) for 2 hours. Under these culture conditions the addition of Ca2+ (5 mM) to the capacitated spermatozoa induced approximately 78 ± 5% (n = 3) of the motile spermatozoa to undergo acrosome reactions while still maintaining sperm motility (80 ± 5%) (n = 3). If the spermatozoa were homogenized in the presence of Hg2+, a time course study revealed that plasma membrane LPC loss occurred between 60 and 90 minutes of incubation. This complete loss of LPC was evident when approximately half of the capacitated spermatozoa had undergone acrosome reactions. Incubation of the spermatozoa with the metabolic and acrosome reaction inhibitor, 2-deoxyglucose (10 mM) for 2 hours, maintained the plasma membrane phospholipid composition similar to that in the noncapacitated state. These data provide evidence that changes in the plasma membrane phospholipid composition may be associated with guinea pig sperm capacitation.  相似文献   

7.
Annexins are a family of Ca2+-binding proteins involved in the exocytotic process. The presence and the role of annexins in mammalian spermatozoa have not been well established. Two annexin-like proteins were obtained from guinea pig testis, a doublet of Mr 31–33 kD (p31/33) and a protein of Mr 50 kD (p50). Both proteins were able to bind to erythrocyte ghosts in a Ca2+-dependent fashion. Polyclonal antibodies against p31/33 reacted with two major proteins, Mrs 50 kD (sp50) and 42 kD (sp42), from mature and immature guinea pig spermatozoa. p50 and sp50 are likely the native proteins from testis and spermatozoa, respectively, and they are seemingly related. By immunofluorescence, sp50 was only found in the apical acrosome region of immature and capacitated and noncapacitated spermatozoa, and its location was intracellular. In spermatozoa undergoing acrosome reaction, sp50 was detected in the whole acrosome, while in spermatozoa that had undergone acrosome reaction sp50 was not detected. However, in the protein pattern of acrosome reaction vesicles, anti-p31/33 antibody revealed diffuse bands of Mr 35–38 kD. sp50 was able to bind to plasma membrane fragments and acrosome outer membrane from demembranated sperm in a Ca2+-dependent fashion. The presence of sp50 in the acrosome region, its distribution throughout the acrosome membrane just before the acrosome reaction, and its ability to bind both plasma and outer acrosome membranes in a Ca2+-dependent manner suggest that sp50 may participate in the acrosome reaction mechanism in guinea pig spermatozoa. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Calmodulin has been postulated as a mediator in the calcium-dependent processes that culminate in the acrosome reaction. Changes in calmodulin compartmentalization as a consequence of the increased permeability to extracellular calcium during capacitation and acrosome reaction have been suggested. In the present study the temporal localization of calmodulin in guinea pig spermatozoa was studied during in vitro capacitation and acrosome reaction by indirect immunofluorescence. Capacitation was achieved by incubation in Tyrode medium supplemented with pyruvate, lactate, and glucose in the presence and in the absence of calcium. Acrosome reaction was elicited in three different conditions: 1) by transfer to minimal culture medium containing pyruvate and lactate (MCM-PL) after in vitro capacitation 2) by 0.003% Triton-X 100 treatment, and 3) by A 23187 addition to sperm samples incubated in MCM-PL. During capacitation, calmodulin was observed both in the acrosome and in the flagellum; this localization seemed to be independent of the presence of extracellular calcium and of exogenous substrates. Throughout the acrosome reaction, different stages of calmodulin compartmentalization were observed. It became clustered around the equatorial region just before or a little after the acrosome reaction had occurred. Later, it was observed around the postacrosomal region in the acrosome-reacted sperm. The changes in calmodulin distribution were found to be dependent on the stage in the acrosome reaction.  相似文献   

9.
A calmodulin antagonist, W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), inhibited induction of the acrosome reaction of sea urchin spermatozoa by egg jelly at 20-50 microM, but W-5 did not. The latter, a chlorine-deficient derivative of W-7, has a lower affinity for calmodulin than does W-7. These results suggest that a Ca2+-calmodulin-dependent process plays an important role in the triggering process of the acrosome reaction of sea urchin spermatozoa.  相似文献   

10.
The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of Ca2+-ATPase present in the plasma membrane, the outer acrosome membrane and the outer mitochondrion membrane resulting in Ca2+ accumulation in the cytoplasm, which in turn blocks further Ca2+ entry through some negative feedback mechanism(s). The inhibitory effect of Ca2+-ATPase antagonist on glycolytic activity may also be the reason for Ca2+ accumulation in cytoplasm and inhibition of Ca2+ uptake.  相似文献   

11.
The mammalian sperm acrosome reaction is a unique form of exocytosis, which includes the loss of the involved membranes. Other laboratories have suggested the involvement of hydrolytic enzymes in somatic cell exocytosis and membrane fusion, and in the invertebrate sperm acrosome reaction, but there is no general agreement on such an involvement. Although reference was made to such work in this review, the focus of the review was on the evidence (summarized below) that supports or fails to support the importance of certain hydrolytic enzymes to the mammalian sperm acrosome reaction. Because the events of capacitation, the prerequisite for the mammalian acrosome reaction, and of the acrosome reaction itself are not fully understood or identified, it is not yet always possible to determine whether the role of a particular enzyme is in a very late step of capacitation or part of the acrosome reaction. (1) The results of studies utilizing inhibitors of trypsin-like enzymes suggest that such an enzyme has a role in the membrane events of the golden hamster sperm acrosome reaction. The enzyme involved may be acrosin, but it is possible that some as yet unidentified trypsin-like enzyme on the sperm surface may play a role in addition to or instead of acrosin. Results obtained by others with guinea pig, ram and mouse spermatozoa suggest that a trypsin-like enzyme is not involved in the membrane events of the acrosome reaction, but only in the loss of acrosomal matrix. Such results, which conflict with those of the hamster study, may have been due to species differences or the presence of fusion-promoting phospholipase-A or lipids contaminating the incubation media components, and in one case to the possibly damaging effects of the high level of calcium ionophore used. The role of the trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction may be to activate a putative prophospholipase and/or to hydrolyse an outer acrosomal or plasma membrane protein, thus promoting fusion. A possible role of the enzyme in the vesiculation step rather than the fusion step of the acrosome reaction cannot be ruled out at present. (2) Experiments utilizing inhibitors of phospholipase-A2, as well as the fusogenic lysophospholipid and cis-unsaturated fatty acid hydrolysis products that would result from such enzyme activity, suggests that a sperm phospholipase-A2 is involved in the golden hamster sperm acrosome reaction. Inhibitor and LPC addition studies in guinea pig spermatozoa have led others to the same conclusion. The fact that partially purified serum albumin is important in so many capacitation media may be explained by its contamination with phospholipase-A and/or phospholipids. Serum albumin may also play a role, at least in part, by its removal of inhibitory products released by the action of phospholipase-A2 in the membrane. The demonstration of phospholipase-A2 activity associated with the acrosome reaction vesicles and/or the soluble component of the acrosome of hamster spermatozoa, and the fact that exogenous phospholipase A2 can stimulate acrosome reactions in hamster and guinea pig spermatozoa, also support a role for the sperm enzyme. The actual site or the sites of the enzyme in the sperm head are not yet known. The enzyme may be on the plasma membrane as well as, or instead of, in the acrosomal membranes or matrix. A substrate for the phospholipase may be phosphatidylcholine produced by phospholipid methylation. It is possible that more than one type of ‘fusogen’ is released by phospholipase activity (LPC and/or cis-unsaturated fatty acids, which have different roles in membrane fusion and/or vesiculation. In addition to acting as a potential ‘fusogen’, arachidonic acid released by sperm phospholipase-A2 probably serves as precursor for cyclo-oxygenase or lipoxygenase pathway metabolites, such as prostaglandins and HETES, which might also play a role in the acrosome reaction. Although much evidence points to a role for phospholipase-A2, phospholipase-C found in spermatozoa could also have a role in the acrosome reaction, perhaps by stimulating events leading to calcium gating, as suggested for this enzyme in somatic secretory cells. (3) A Mg2+-ATPase H+-pump is present in the acrosome of the golden hamster spermatozoon. Inhibition of this pump by certain inhibitors of ATPases (but not by those that only inhibit mitochondrial function) leads to an acrosome reaction only in capacitated spermatozoa and only in the presence of external K+. The enzyme is also inhibited by low levels of calcium, and such inhibition, combined with increased outer membrane permeability to H+ and K+, and possibly plasma membrane permeability to H+ (perhaps by the formation of channels), may be part of capacitation and/or the acrosome reaction. The pH of the hamster sperm acrosome has been shown to become more alkaline during capacitation, and such a change may result in the activation of hydrolytic enzymes in the acrosome or perhaps in a change in membrane permeability to Ca2+. A similar Mg2+-ATPase has not been found in isolated boar sperm head membranes. However, that conflicting result could have been due to the use of noncapacitated boar spermatozoa for the preparation of the membranes or to protease modification of the boar sperm enzyme during assay. (4) Inhibition of Na+, K+-ATPase inhibits the acrosome reaction of golden hamster spermatozoa, and the activity of this enzyme increases relatively early during capacitation. A late influx of K+ is important for the acrosome reaction. However, this late influx may not be due to Na+, K+-ATPase, but instead may be due to a K+ permeability increase (possibly via newly formed channels) in the membranes during capacitation. It is suggested in this review that Na+, K+-ATPase has a role early in capacitation rather than directly in the acrosome reaction (although such a role cannot yet be completely ruled out). One possible role for the enzyme in capacitation might be to stimulate glycolysis (which appears to be essential for capacitation and/or the acrosome reaction of hamster and mouse spermatozoa). The function of the influx of K+ just before the acrosome reaction is probably to stimulate, directly or indirectly, the H+-efflux required for the increase in intraacrosomal pH occurring during capacitation. Direct stimulation of the acrosome reaction by a change in membrane potential resulting directly from K+-influx is not a likely explanation for the hamster results. However, the importance of an earlier membrane potential change, due to increased Na+, K+-ATPase during capacitation, and/or of later membrane potential changes resulting from the pH change, cannot be ruled out. Although K+ is required for the hamster acrosome reaction, other workers have reported that K+ inhibits guinea pig sperm capacitation. However, the experimental procedures used in the guinea pig sperm studies raise some questions about the interpretation of those inhibition results. (5) Ca2+-influx is known to be required for the acrosome reaction. Others have suggested that increased Ca2+-influx due to inhibition or stimulation of sperm membrane calcium transport ATPases are involved in the acrosome reaction. There is as yet no direct or indirect biochemical evidence that inhibition or stimulation of such enzymatic activity is involved in the acrosome reaction, and further studies are needed on those questions. (6) I suggest that the hydrolytic enzymes important to the hamster sperm acrosome reaction will also prove important for the acrosome reaction of all other eutherian mammals.  相似文献   

12.
The effects of lipids on the survival, acrosome reaction, and fertilizing capacity of guinea pig spermatozoa were studied by incubating the spermatozoa in media containing various concentrations of the lipids. Lipids tested were: phosphatidyl-choline (PC), -ethanolamine (PE), -inositol (PI), -serine (PS), sphingomyelin (S), cholesterol (C), lysophosphatidyl-choline (LC), -ethanolamine (LE), -inositol (LI), -serine (LS), and glyceryl monooleate (M). When spermatozoa were incubated in a regular medium (containing 2 mM Ca2+) with M, the majority underwent the acrosome reaction within 1 hour. None of the other lipids were as effective as M, and some were totally ineffective under the same conditions. However, when spermatozoa were preincubated in Ca2+-free medium containing LC, LE, or LI, they gained the ability to undergo the acrosome reaction. One hour of preincubation in Ca2+-free medium with LC, LE, or LI was enough to render the vast majority of spermatozoa capable of undergoing the acrosome reaction in response to Ca2+. The optimum concentrations for LC, LE, and LI were approximately 85 μg/ml, 210 μg/ml, and 140 μg/ml, respectively. Spermatozoa that had undergone the acrosome reaction by pretreatment with LC, LE, or LI remained actively motile and were capable of fertilizing eggs. LS was totally ineffective in rendering the spermatozoa capable of undergoing the acrosome reaction, and in fact it inhibited the acrosome reaction by itself and also inhibited the LC-, LE-, or LI-mediated acrosome reaction. LS did not prevent acrosome-reacted spermatozoa from penetrating the zona pellucida, but did prevent sperm-egg fusion. Based on these findings, it is suggested that lysophospholipids are intricately involved in the sperm acrosome reaction and perhaps in sperm-egg fusion.  相似文献   

13.
When guinea pig spermatozoa are preincubated for 1 hr in Ca2+?free medium containing a low concentration of lysolecithin (LC, 85 μg/ml) and then exposed to 2 mM Ca2+ by diluting the preincubation medium with an equal volume of LC?free, 4 mM Ca2+?containing medium, the majority of the spermatozoa undergo acrosome reaction promptly. On the other hand, when the preincubated spermatozoa are exposed to 2 mM Ca2+ without reducing the original concentration of LC in the medium, none of them undergo acrosome reaction. These spermatoza can acrosome?react if they are transferred to an LC?free medium. These results and those of some other experiments suggest that in the presistent presence of a high concentration of LC in the medium, exogenous Ca2+ essential for the acrosome reaction either does not penetrate the sperm plasma membrane or, if it does, it cannot alter the membrane for the acrosome reaction, at least under the experimental conditions employed. Freeze?fracture examination of the sperm plasma membrane has revealed that small areas or patches free of intramembranous paarticles (IMPs) appear in the membrance during sperm preincubation, and these IMP?free areas expand drastically in response to Ca2+ when the LC conccentration in the medium is reduced at the time Ca2+ is added to the medium. In contrast, IMP?free areas remain unchanged even after exposure of spermatozoa to Ca2+ if the concentration of LC remains at its original level of 85 μg/ml.  相似文献   

14.
Two experiments were conducted to assess the effects of caffeine and casein phosphopeptides (CPPs). One experiment tested the ability of frozenthawed epididymal spermatozoa from boar (A, B, C), of proven low in vitro fertilization rates, to penetrate pig follicular oocytes. The other experiment tested the ability of ejaculated spermatozoa to uptake Ca2+. In Experiment 1, oocytes matured in vitro were inseminated with spermatozoa (Boar A) in medium that contained 0, 2, 5, 10, 15, and 20 mM caffeine and CPPs (1 mg/ml), or in medium that contained the same caffeine concentrations without CPPs. When CPPs were added to the caffeine-containing medium, significantly higher penetration rates were obtained than when the oocytes were inseminated in the CPPs-free medium. When the oocytes were inseminated with the spermatozoa (Boar A, B, C) in medium that contained 5 mM caffeine and dephosphorylated CPPs (dCPP:1 mg/ml), the penetration rate was significantly lower than when the oocytes were inseminated with the spermatozoa in medium containing 5 mM caffeine and CPPs (1 mg/ml). In Experiment 2, the concentration of Ca2+ in ejaculated spermatozoa of proven low in vitro fertilization rates during incubation in the fertilization medium was determined with fluorescence, Fura2/AM. When the medium contained CPPs, the intracellular concentration of Ca2+ in spermatozoa increased with a peak of 113 nM after 90 min of incubation. The concentration of Ca2+ was gradually decreased in the medium without CPPs. However, addition of CPPs in the medium had no effect on the motility of spermatozoa in Experiments 1 and 2. These results indicate that CPPs promote Ca2+ uptake by spermatozoa and are effective for capacitation and/or acrosome reaction of spermatozoa leading to sperm penetration when caffeine is present in the medium and that the effect is reduced by dephosphorylation of CPPs. © 1994 Wiley-Liss, Inc.  相似文献   

15.
The release of preloaded [3H]dopamine by the synaptosomal fraction prepared from rat forebrain was examined in the presence and absence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor. The release induced by high K+ was blocked by W-7 in a concentration-dependent manner after the pretreatment with and in the presence of the inhibitor. The inhibition by W-7 may specifically involve calmodulin, because little effects were seen with N-(6-aminohexyl)-naphthalenesulfonamide, an analog of W-7 with only a low affinity for calmodulin. W-7 may not affect the voltage-dependent Ca2+ channel of synaptosomal plasmalemma, since the inhibitor produced no change in the synaptosomal 45Ca2+ uptake induced by high K+ depolarization. Thus, calmodulin may play a role in transmitter release and may function at the step(s) after the increase of free Ca2+ concentration in the cytosol of the nerve terminal. W-7 affected only to a small extent [3H]dopamine release in the presence of A23187 plus Ca2+.  相似文献   

16.
The effects of ergothioneine on spermatozoa and ova were investigated in vitro and in vivo. Spermatozoa were treated with ergothioneine in vitro , and injected into the uterine cavity of female mice immediately after the induction of superovulation. The ova were recovered 24 hr later and assessed for fertilization. Preincubation of spermatozoa with ergothioneine resulted in a significant increase in the fertilization rate. When ova were inseminated in the same manner in vitro with spermatozoa treated with 0.1 or 1.0 mM of ergothioneine, the penetration rate was significantly increased. These results suggest that ergothioneine is effective in inducing both capacitation and the acrosome reaction of mouse spermatozoa. Ergothioneine at concentrations of 0.1 and 1.0 mM in the preincubation medium was also effective in inducing the acrosome reaction of guinea pig spermatozoa. However, it had no significant effect on the development of 2-cell ova in vitro .  相似文献   

17.
Epididymal spermatozoa of the guinea pig were incubated under conditions known to promote a rapid synchronous capacitation in a large proportion of the spermatozoa (Ca2+-free medium with lysophosphatidylcholine, LC) or in Ca 2+-free medium without LC. To study the effects of altered thiol-disulfide status and content, incubations were conducted with reagents that maintain and increase thiol groups (DTT, GSH), maintain and increase disulfide groups (diamide, GSSG), or which irreversibly block thiol groups by alkylation (NEM). The permeable DTT inhibited LC-induced capacitation and at high concentrations diminished the percentage of acrosome reactions in capacitated spermatozoa. The permeable diamide exhibited a stimulatory effect upon capacitation. The largely impermeable GSH and GSSG exhibited effects similar to their respective permeable counterparts but their effects were moderate and required extremely high concentrations. The DTT inhibition of LC-induced capacitation was reversible by washing and a further 1 hr incubation. In this final incubation after removal of DTT by washing, LC was absent too so its stimulatory effect must have been accomplished prior to washing and in the presence of DTT. NEM-alkylation of the existing thiol population did not affect LC-induced capacitation but alkylation of the increased thiol population after prior DTT treatment was inhibitory of capacitation. These results suggest that the maintenance and/or formation of disulfide groups on enzymes or structural proteins may be a component of the capacitation process. In contrast, the formation and maintenance by alkylation of increased thiol groups but not the maintenance of existing thiol groups, is inhibitory of capacitation. The relevance of these findings to a role for a thiol-sensitive proteinase in capacitation is discussed.  相似文献   

18.
We have used chlortetracycline (CTC) analysis to investigate mechanisms that may play important roles during bull sperm capacitation in a culture medium (containing glucose, heparin, and caffeine) known to promote capacitation and fertilization in vitro. In initial experiments employing the Ca2+ ionophore A23187, we identified three discrete CTC patterns so similar to those described for mouse and human sperm that we have employed the same nomenclature: “F,” characteristic of uncapacitated, acrosome-intact cells; “B,” characteristic of capacitated, acrosome-intact, cells; “AR,” characteristic of capacitated, acrosome-reacted cells. Over a 60-min period, A23187 stimulated significant increases in B and AR pattern cells, with concomitant decreases in F pattern cells, suggesting a very rapid transition from the uncapacitated to the capacitated state and then on to exocytosis. Without ionophore, significant changes in the proportions of F and B pattern cells were also observed, but the maximum responses required 4 hr; the proportion of AR cells was consistently ~ 15% throughout, indicating a low incidence of spontaneous acrosome loss. Analysis of cells in media with altered composition indicated that the inclusion of either heparin or caffeine significantly promoted capacitation to about the same extent, but together, heparin plus caffeine had an even more stimulatory effect. Despite this, none of these treatments triggered acrosome loss above the levels seen in media lacking these constituents. In the presence of caffeine, with or without heparin, the inclusion of glucose had little effect on responses, but in the presence of heparin there were fewer B cells. In the presence of either quercetin, a Ca-ATPase inhibitor used at 50–200 μM, or W-7, a calmodulin antagonist used at 5–125 μM, capacitation per se was accelerated, as evidenced by significant decreases in F and significant increases in B pattern cells; only the highest concentration of each caused significant increases in AR cells. In addition, 25 and 125 μM W-7 markedly stimulated motility, both quantitatively and qualitatively. Finally the Na+ ionophore monensin at 500 μM significantly accelerated both capacitation and acrosomal exocytosis. The addition of the dihydropyridine calcium channel blocker nifedipine at 10 nM, just prior to monensin, did not inhibit capacitation (F to B transition) but blocked acrosomal exocytosis (B to AR transition). We suggest that Ca2+ is required for functional changes in bull sperm, with a Ca2+-ATPase modulating intracellular Ca2+ during capacitation and calcium channels controlling the Ca2+ influx required for acrosomal exocytosis. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Gossypol-induced inhibition of guinea pig sperm capacitation in vitro   总被引:2,自引:0,他引:2  
The effect of gossypol acetate at various concentrations (10(-6) to 10(-4) M) on guinea pig sperm forward progressive movement, capacitation, and the acrosome reaction was explored in vitro. We found that 10(-4) M gossypol completely abolished the forward progressive motility of the sperm, and that this inhibition of motility was proportional to the concentration of gossypol used. Also, a dose-dependent decrease in acrosome reactions occurred with concentrations of the agent as low as 5.0 X 10(-6) M. However, we observed that such prevention of the acrosome reaction apparently happens at the capacitation stage rather than during the acrosome reaction itself. Inhibition of capacitation by gossypol was reversible--once the spermatozoa were capacitated in gossypol-free medium, the compound did not block the reaction.  相似文献   

20.
Guinea pig sperm respiration was determined in minimal capacitation medium (MCM) with different energy sources. The ZO2 observed for spermatozoa suspended in media containing pyruvate and lactate was 35.7 +/- 5.9, pyruvate alone, 27.9 +/- 3.8 and D-glucose alone 3.4 +/- 1.1. When D-glucose was added to spermatozoa rapidly respiring in media containing pyruvate as the only exogenous energy source, an immediate suppression in respiration was observed. Further reduction was caused by continued addition of D-glucose. Fructose and mannose also produced a suppression in respiratory rate. However, lactose, fucose, sucrose, L-glucose, and galactose did not alter the respiratory rate. The suppression of respiration by metabolizable sugars is paralleled by a suppression of acrosome reaction in guinea pig spermatozoa. The possibility that suppression of respiration is the mechanism for retardation of capacitation and the subsequent acrosome reaction by D-glucose and other metabolizable sugars is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号