首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
该研究旨在探究小功率无线电能传输(wireless power transmission,WPT)系统对小鼠海马CA1区神经元兴奋性的影响。将小鼠分为对照组和辐射组(2周组、4周组、6周组),通过莫里斯水迷宫实验、光纤光度实验、HE染色实验、膜片钳实验观察小鼠工作记忆能力、Ca2+信号强度、海马锥体细胞数量、动作电位的变化以及瞬时外向K+通道电流(IA)和延迟整流K+通道电流(IK)的变化。莫里斯水迷宫实验结果显示,小功率WPT电磁环境不会对小鼠的工作记忆能力产生影响;光纤光度实验以及HE染色实验显示,小功率WPT电磁环境可能促进了海马CA1区神经元集群的放电活动,导致了荧光信号强度的增加。这表明电磁环境对Ca2+浓度的调节可能增加了海马CA1区神经元放电活动次数,增强了海马CA1区神经元的兴奋性。随着辐射时间的增加,荧光信号的峰值逐渐下降,表明小鼠海马锥体细胞适应了小功率WPT电磁环境;小功率WPT电磁环境提高了小鼠海马CA1区的神经元的静息膜电位,缩短...  相似文献   

2.
电磁场对健康影响的研究包括流行病调查、人体与动物、细胞、生化与分子生物、生物物理等5个层次,电磁生物效应最初是通过物理作用产生化学反应,继而产生后续生物反应.自由基、电磁能量和生物钙是分属于化学、物理学和生物学的3个概念,研究它们之间的关系对于认识电磁生物效应的原初作用具有意义.选择海马神经元,观察在0.1mT、0.5mT和1.0mT电磁场暴露48h,海马神经元ROS水平和胞内Ca2+浓度的变化.实验结果表明:暴露于0.1mT,0.5mT和1.0mT电磁场海马神经元的ROS水平和Ca2+浓度都比对照组有显著性提高(P<0.01).暴露于0.1mT和0.5mT电磁场的ROS水平和暴露于0.1mT电磁场的Ca2+浓度与自由基清除剂+电磁场(Trolox+EMF)组比较没有差异(P>0.05),暴露于1.0mT电磁场的ROS水平和暴露于0.5mT和1.0mT电磁场的Ca2+浓度比Trolox+EMF组有显著性提高(P<0.01).表明电磁场可以促进细胞自由基的产生,并且ROS水平与胞内Ca2+浓度有正相关性.  相似文献   

3.
钙离子(Ca2+)广泛参与细胞生理病理反应,其含量和在胞内位置的改变可激发不同效应。因此,快速有效检测胞内Ca2+浓度及其分布对于了解其在细胞活动中的作用具有重要意义。荧光探针法由于灵敏度高、使用方便、成本低廉等优点得到广泛应用,但不同类型的探针在准确性、灵敏度和稳定性等方面各有优劣。本文系统总结了现有的Ca2+化学荧光探针和基因编码探针,为开展Ca2+相关研究时合理选择检测方法提供参考。  相似文献   

4.
脱落酸(ABA)具有调节植物快速响应逆境的重要功能。植物细胞中ABA核心信号通路由ABA受体PYR1/PYLs/RCARs、A类碱性蛋白磷酸酶PP2Cs和Snf1相关蛋白激酶SnRK2s组成。活性氧(ROS)和Ca2+是保卫细胞中的重要第二信使,调控ABA诱导的气孔关闭。该文对保卫细胞中核心ABA信号蛋白的调控以及ROS和Ca2+介导的ABA信号转导等最新研究成果进行综述,旨在阐明保卫细胞中ABA信号调控机制。  相似文献   

5.
溴氰菊酯对神经细胞钙通道和 钙库的激活作用   总被引:7,自引:1,他引:7  
应用膜片钳全细胞记录方式和显微荧光测钙技术,以MN9D神经细胞为材料研究了溴氰菊酯的作用机理。低浓度(10-9 mol/L~10-7 mol/L)溴氰菊酯就能使神经细胞Ca2+电流显著增加。10-9 mol/L,1 min时电流增加平均值为20.64%,5 min时为15.48%,表明溴氰菊酯能激活高电位激活钙通道(L型和N型),促使Ca2+内流,显微荧光测定细胞内自由钙离子浓度([Ca2+I)发现,在含Ca2+和无Ca2+的胞外液中,溴氰菊酯均能使胞内自由钙离子数量增加,表明它能刺激胞内钙库释放Ca2+。[Ca2+I升高对细胞功能影响很大。  相似文献   

6.
以黄瓜品种‘新春4号’为材料,研究干旱胁迫下一氧化氮(NO)和钙离子(Ca2+)处理下黄瓜的生根指标、内源Ca2+荧光强度以及抗氧化酶(超氧化物歧化酶SOD、过氧化氢酶CAT、抗坏血酸过氧化物酶APX)活性,分析干旱条件下黄瓜不定根发生过程中NO和Ca2+之间的关系.结果表明: 200 μmol·L-1 氯化钙(CaCl2)和0.05%聚乙二醇(PEG)共处理显著提高了干旱条件下黄瓜不定根的根长和根数;添加Ca2+螯合剂(EGTA)和通道抑制剂(BAPTA/AM)处理显著降低了干旱条件下NO诱导的不定根根数和根长.干旱条件下,NO和CaCl2处理提高了黄瓜下胚轴内源Ca2+荧光强度;而NO清除剂(cPTIO)处理的Ca2+荧光强度显著低于NO处理.干旱条件下,NO和CaCl2处理显著提高了黄瓜下胚轴抗氧化酶活性;而Ca2+抑制剂或螯合剂处理显著降低了NO诱导的抗氧化酶活性.由此可见,干旱条件下Ca2+参与了NO调控黄瓜抗氧化酶活性,缓解了干旱胁迫对不定根形成产生的伤害,进而促进了不定根的发生.  相似文献   

7.
探讨了外源Ca2+对水杨酸(SA)诱导番茄抗灰霉病的增效机制.以番茄灰霉病敏感型品种‘L402’幼苗为材料,分别进行H2O(对照)、SA、SA+Ca和SA+EGTA(Ca2+螯合剂)处理,期间(1~5 d)分析各处理植株叶片活性氧(ROS)含量,苯丙氨酸解氨酶、几丁质酶和β-1,3-葡聚糖酶活性,以及病程相关蛋白编码基因PR1、PR2和PR3表达水平的变化,并调查处理3 d后灰霉病情指数.结果表明: 与对照(病情指数为74.8)相比,SA、SA+Ca和SA+EGTA处理的植株叶片灰霉病的病情指数分别为46.9、38.5和70.3;SA处理明显提高叶片ROS含量以及苯丙氨酸解氨酶、几丁质酶和β-1,3-葡聚糖酶活性,这些参数在SA+Ca处理的植株中被进一步提高,但在SA+EGTA处理的植株中则被降低;SA处理明显提高了PR1、PR2a和PR3b的表达水平,Ca2+进一步加强了这一效果,而EGTA则起抑制作用.SA或SA+Ca处理期间的PR2b和PR3a表达较未处理的对照上调了1~2倍,而PR1、PR2a和PR3b上调了2~5倍.表明Ca2+对SA诱导番茄抗灰霉病具有增效作用,其机理至少与Ca2+和SA协同作用促进ROS形成有关,而ROS作为信号分子增加植株抗病相关酶活性以及PR1、PR2a和PR3b等防卫基因的表达.  相似文献   

8.
以感染叶锈菌的小麦(Triticum aestivum)叶片细胞间隙液IWF-260作为激发子, 刺激小麦品种洛夫林10和郑州5389的悬浮细胞, 探讨由激发子引发悬浮细胞过敏性反应中Ca2+和NO的变化及相互作用。以荧光分子探针Fluo-3AM和DAF-FM DA分别对细胞内Ca2+和NO进行标记, 利用激光共聚焦扫描显微镜对其动态变化进行实时监测, 通过药物学实验对Ca2+和NO的产生机制及其可能存在的相互关系进行探讨。结果表明, 2个小麦品种悬浮细胞的[Ca2+]cyt水平对激发子刺激的反应表现出明显的差异, 对叶锈菌小种表现不亲和的洛夫林10悬浮细胞分别在激发子刺激后330秒和700秒出现2个钙峰; 而对该小种表现亲和的郑州5389悬浮细胞在激发子刺激后[Ca2+]cyt水平稍有波动但变化不明显。药物学实验证明, [Ca2+]cyt的升高依赖于胞外钙离子内流, 钙离子与激发子刺激诱发的过敏性防卫反应紧密相关。同样, 在激发子刺激后, 洛夫林10悬浮细胞出现1个NO峰, 而郑州5389悬浮细胞胞质NO变化不明显。药物学实验初步证明, NO的产生与胞外钙离子内流密切相关。由此推测, 在小麦悬浮细胞应答激发子刺激诱发的过敏性反应中, NO可能在钙的下游发挥作用。  相似文献   

9.
探讨了外源Ca2+对水杨酸(SA)诱导番茄抗灰霉病的增效机制.以番茄灰霉病敏感型品种‘L402’幼苗为材料,分别进行H2O(对照)、SA、SA+Ca和SA+EGTA(Ca2+螯合剂)处理,期间(1~5 d)分析各处理植株叶片活性氧(ROS)含量,苯丙氨酸解氨酶、几丁质酶和β-1,3-葡聚糖酶活性,以及病程相关蛋白编码基因PR1、PR2和PR3表达水平的变化,并调查处理3 d后灰霉病情指数.结果表明: 与对照(病情指数为74.8)相比,SA、SA+Ca和SA+EGTA处理的植株叶片灰霉病的病情指数分别为46.9、38.5和70.3;SA处理明显提高叶片ROS含量以及苯丙氨酸解氨酶、几丁质酶和β-1,3-葡聚糖酶活性,这些参数在SA+Ca处理的植株中被进一步提高,但在SA+EGTA处理的植株中则被降低;SA处理明显提高了PR1、PR2a和PR3b的表达水平,Ca2+进一步加强了这一效果,而EGTA则起抑制作用.SA或SA+Ca处理期间的PR2b和PR3a表达较未处理的对照上调了1~2倍,而PR1、PR2a和PR3b上调了2~5倍.表明Ca2+对SA诱导番茄抗灰霉病具有增效作用,其机理至少与Ca2+和SA协同作用促进ROS形成有关,而ROS作为信号分子增加植株抗病相关酶活性以及PR1、PR2a和PR3b等防卫基因的表达.  相似文献   

10.
通过盆栽试验,采用原子吸收分光光度法和非损伤微测技术,研究了NaHCO3胁迫(300 mmol·L-1)对大洋洲滨藜、四翅滨藜和宁夏枸杞3种灌木离子吸收及运转的影响.结果表明: 随着NaHCO3浓度升高,两种滨藜和宁夏枸杞叶片中Na+含量升高,300 mmol·L-1NaHCO3胁迫下,宁夏枸杞叶肉细胞Na+的外排增加,两种滨藜净Na+外排降低;随着胁迫时间的延长,大洋洲滨藜和宁夏枸杞叶片的K+含量下降,Na+/K+升高,四翅滨藜叶片K+含量升高,Na+/K+降低;随着浓度的升高,宁夏枸杞叶片积累Ca2+减少,Na+/Ca2+高于对照,叶肉细胞Ca2+外排;两种滨藜叶Ca2+含量总体呈升高趋势,叶肉细胞Ca2+表现为内流.在NaHCO3胁迫下,3种灌木通过不同的策略来消除Na+毒害.宁夏枸杞叶片Na+的积累抑制了对Ca2+的吸收;两种滨藜Ca2+的内流促使细胞质中游离Ca2+增加,增加的细胞质\[Ca2+\]cyt防治质膜H+ ATPase去极化,限制K+的外排,从而维持细胞内Na+/K+的平衡,其中四翅滨藜调控Na+/K+平衡的能力较强.  相似文献   

11.
The biological effects of electric and magnetic fields, which are ubiquitous in modern society, remain poorly understood. Here, we applied a single-cell approach to study the effects of short-term exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on muscle cell differentiation and function using C2C12 cells as an in vitro model of the skeletal muscle phenotype. Our focus was on markers of oxidative stress and calcium (Ca2+) handling, two interrelated cellular processes previously shown to be affected by such radiation in other cell models. Collectively, our data reveal that ELF-EMFs (1) induced reactive oxygen species production in myoblasts and myotubes with a concomitant decrease in mitochondrial membrane potential; (2) activated the cellular detoxification system, increasing catalase and glutathione peroxidase activities; and (3) altered intracellular Ca2+homeostasis, increasing the spontaneous activity of myotubes and enhancing cellular reactivity to a depolarizing agent (KCl) or an agonist (caffeine) of intracellular store Ca2+channels. In conclusion, our data support a possible link between exposure to ELF-EMFs and modification of the cellular redox state, which could, in turn, increase the level of intracellular Ca2+and thus modulate the metabolic activity of C2C12 cells.  相似文献   

12.
We investigated the contribution of L-, N- and P/Q-type Ca2+ channels to the [Ca2+]i changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca2+ imaging. Selective Ca2+ channel blockers, namely nitrendipine, ω-Conotoxin GVIA (ω-GVIA) and ω-Agatoxin IVA (ω-AgaIVA) were used. The [Ca2+]i changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-d-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca2+ channel blocker caused differential inhibitory effects on [Ca2+]i responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by ω-GVIA or ω-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of ω-GVIA or ω-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q- type Ca2+ channels activated by stimulation of the AMPA/kainate receptors. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

13.
Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of α4β2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of α4-containing nAChRs. In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1. Here we report, that only α7- but not α4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine. The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer’s disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between α4- and α7-containing nAChRs.  相似文献   

14.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

15.
Brain cell metabolism is intimately associated with intracellular oxidation–reduction (redox) balance. Glutamatergic transmission is accompanied with changes in substrate preference in neurons. Therefore, we studied cytoplasmatic redox changes in hippocampal neurons in culture exposed to glutamate. Neurons were transfected with HyPer, a genetically encoded redox biosensor for hydrogen peroxide which allows real-time imaging of the redox state. The rate of fluorescence decay, corresponding to the reduction of the biosensor was found to be augmented by low doses of glutamate (10 μM) as well as by pharmacological stimulation of NMDA glutamate receptors. Acute chelation of extracellular Ca2+ abolished the glutamate-induced effect observed on HyPer fluorescence. Additional experiments indicated that mitochondrial function and hence energetic substrate availability commands the redox state of neurons and is required for the glutamate effect observed on the biosensor signal. Furthermore, our results implicated astrocytic metabolism in the changes of neuronal redox state observed with glutamate.  相似文献   

16.
There is increasing evidence that a functional interaction exists between interleukin-1β (IL-1β) and N-methyl-d-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1β on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1β (30-100 ng/ml) inhibited the mean amplitude of the NMDA-induced outward currents that were mediated by charybdotoxin (ChTX)-sensitive Ca2+-activated K+ (KCa) channels. IL-1β (100 ng/ml) also significantly increased the mean ratio of the NMDA-induced inward current amplitudes measured at the end to the beginning of a 20-s application of NMDA. In hippocampal neurons from acute slice preparations, IL-1β significantly inhibited ChTX-sensitive KCa currents induced by a depolarizing voltage-step. IL-1 receptor antagonist antagonized effects of IL-1β. These results strongly suggest that IL-1β increases the neuronal excitability by inhibition of ChTX-sensitive KCa channels activated by Ca2+ influx through both NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

17.
The effect of hyposmotic conditions on the concentration of intracellular free calcium ([Ca2+]i) was studied in cultured cerebellar granule cells and cerebral cortical neurons after loading of the cells with the fluorescent Ca2+ chelator Fluo-3. It was found that in both types of neurons exposure to media with a decrease in osmolarity of 20 to 50% of the osmolarity in the isosmotic medium (320 mOsm) led to a dose dependent increase in [Ca2+]i with a time course showing the highest value at the earliest measured time point, i.e. 40 s after exposure to the hyposmotic media and a subsequent decline towards the basal level during the following 320 s. The response in the cortical neurons was larger than in the granule cells but both types of neurons exhibited a similar increase in [Ca2+]i after expoxure to 50 mM K+ which was of the same magnitude as the increase in [Ca2+]i observed in the cortical neurons exposed for 40 s to a medium with a 50% reduction in osmolarity. In both types of neurons the blocker of voltage gated Ca2+ channels verapamil had no effect on the hyposmolarity induced increase in [Ca2+]i. On the contrary, this increase in [Ca2+]i was dependent upon external calcium and could be inhibited partly or completely by the inorganic blockers of Ca2+ channels Mg2+ and La3+. Dantrolene which prevents release of Ca2+ from internal stores had no effect. The results show that exposure of neurons to hyposmotic conditions leading to swelling results in a large increase in free intracellular Ca2+ which represents an influx of Ca2+ rather than a release of Ca2+ from internal, dantrolene sensitive stores.  相似文献   

18.
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca2+ channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca2+ channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca2+ current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca2+ entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca2+ channel interaction represents a novel mechanism for modulation of Ca2+ influx into nerve terminals and, hence, of synaptic strength.  相似文献   

19.
Imaging the activities of individual neurons with genetically encoded Ca2+ indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca2+ signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (F max/F min = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca2+ imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca2+ responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.  相似文献   

20.
The Na+/Ca2+ exchanger (NCX) plays a role in the regulation of intracellular Ca2+ levels, and nitric oxide (NO) is involved in many pathological conditions including neurodegenerative disorders. We have previously found that sodium nitroprusside (SNP), an NO donor, causes apoptotic-like cell death in cultured glial cells via NCX-mediated pathways and the mechanism for NO-induced cytotoxicity is cell type-dependent. The present study examined using the specific NCX inhibitor 2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline (SEA0400) whether NCX is involved in NO-induced injury in cultured neuronal cells. The treatment of neuroblastoma SH-SY5Y cells with SNP resulted in apoptosis and the cytotoxicity was blocked by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase inhibitor U0126 and the p38 MAP kinase (MAPK) inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP60012. SNP increased Ca2+ influx and intracellular Ca2+ levels. In addition, SNP increased ERK and p38 MAPK phosphorylation, and production of reactive oxygen species (ROS) in an extracellular Ca2+-dependent manner. These effects of SNP were prevented by SEA0400. SNP-induced cytotoxicity was not affected by inhibitors of the Ca2+, Na+ and store-operated/capacitative channels. Moreover, SNP-induced increase in intracellular Ca2+ levels, ROS production and decrease in cell viability were blocked by a cGMP-dependent protein kinase (PKG) inhibitor. These results suggest that Ca2+ influx via the reverse of NCX is involved in the cascade of NO-induced neuronal apoptosis and NO activates the NCX through guanylate cyclase/PKG pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号