首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm-zona pellucida (ZP) penetration during fertilization is a process that most likely involves enzymatic digestion of this extracellular coat by spermatozoa. Since the inner acrosomal membrane (IAM) is the leading edge of spermatozoa during penetration and proteins required for secondary binding of sperm to the zona are present on it, the IAM is the likely location of these enzymes. The objectives of this study were to identify and characterize proteinases present on the IAM, confirm their localization and provide evidence for their role in fertilization. Gelatin zymography of detergent extracts of the IAM revealed bands of enzymatic activity identified as serine and matrix metallo-proteinases (MMPs). Specific inhibitors to MMPs revealed that MMP activity was due to MMP2. Immunoblotting determined that the serine protease activity on the zymogram was due to acrosin and also confirmed the MMP2 activity. Immunogold labeling of spermatozoa at the electron microscope level showed that acrosin and MMP2 were confined to the apical and principal segments of the acrosome in association with the IAM, confirming our IAM isolation technique. Immunohistochemical examination of acrosin and MMP2 during spermiogenesis showed that both proteins originate in the acrosomic granule during the Golgi phase and later redistribute to the acrosomal membrane. Anti-MMP2 antibodies and inhibitors incorporated into in vitro fertilization media significantly decreased fertilization rates. This is the first study to demonstrate that MMP2 and acrosin are associated with the IAM and introduces the possibility of their cooperation in enzymatic digestion of the ZP during penetration.  相似文献   

2.
Sarcosine oxidase from Corynebacterium sp. U-96 is inhibited by iodoacetamide (IAM) and the inhibition is prevented by the substrate analog, sodium acetate. To elucidate the mechanism of inhibition of the enzyme by IAM, we determined the amino acid sequences around the IAM-reactive cysteine residues, and the effects of the modification on the enzyme activity and the oxidation-reduction of the FAD moieties of the enzyme. The enzyme was specifically labeled with [14C]IAM, and the labeled subunit B was digested with trypsin and chymotrypsin. The HPLC profiles of the proteolytic digests showed mainly two radioactive peaks. The 14C-labeled peptides were purified, and their N-terminal sequences were determined to be Cys-Gly-Thr-Pro-Gly-Ala-Gly-Tyr (TC-1) and Ala-Gly-Ile-Ala-Cys-Xaa-Asp-Xaa-Val-Ala(-)- (TC-2). Peptide TC-2 contains a covalent FAD-binding sequence [Asx-His-Val-Ala; Shiga et al. (1983) Biochem. Int., 6, 737]. [14C]IAM-incorporation into the TC-1 sequence was strongly inhibited by sodium acetate. The N-terminal amino acid sequence of the CNBr fragment containing the TC-1 sequence (65 residues) was determined. According to the secondary structure predictions, Gly-Thr-Pro-Gly-Ala-Gly of the TC-1 sequence is located between the beta sheet and alpha helix of the sequence, indicating the presence of an AMP-binding site in the TC-1 region. The activity of the enzyme treated with IAM in the presence and absence of sodium acetate was not inhibited by sodium sulfite, which is known to react specifically with covalent FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A nondestructive, sensitive assay to monitor the hydrocarbon content of silica-based chromatography particles has been developed. The assay requires a microscope accessory interfaced with a Fourier transform infrared (FTIR) spectrometer. For determining hydrocarbon content, undiluted alkyl-silica-bonded phases were pressed into a thin wafer. Hydrocarbon content was quantitated using the integrated hydrocarbon band intensity between 2995 and 2825 cm-1 [i.e., band area C-H] and the integrated silica oxide band intensity between 1945 and 1780 cm-1 [i.e., band area Si-O]. Plotting the [band area C-H]/[band area Si-O] ratio vs the carbon content determined by elemental analysis gave a correlation coefficient of r = 0.997. The FTIR assay was validated on 5-, 7-, and 12-microns silica particles using three different immobilized artificial membrane (IAM) silica-bonded phases. The utility of the FTIR assay in determining hydrocarbon content was demonstrated by evaluating hydrocarbon leaching from IAM phases exposed to mobile-phase solvents. The ability of organic solvents to leach hydrocarbon from IAM phases containing phosphatidylcholine (PC) as the immobilized ligand was chloroform greater than ethanol approximately methanol greater than ethyl acetate greater than methylene chloride greater than acetonitrile greater than acetone. Acetone and acetonitrile cause very little hydrocarbon leaching from HPLC-IAM.PC columns. When challenged with different mobile phases, IAM.PC columns perfused with mobile phase are more stable than IAM.PC-bonded phases stirred in mobile phases. IAM.PC contains lecithin linked to silica by amide bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
beta 1, 4-Galactosyltransferase (GalTase) is localized to the plasma membrane of mouse sperm, in which it mediates the binding of sperm to glycoconjugate residues in the egg zona pellucida. In this study, the presence of subcellular distribution of sperm GalTase were determined in two other mammalian species that yield sufficient sperm for subcellular fractionation. Equine and bovine semen were collected, and the plasma membranes (PM), outer acrosomal membranes (OAM), and inner acrosomal membranes (IAM) were sequentially removed. The purities of the isolated membrane preparations were determined by transmission electron microscopy and found to be greater than or equal to 90%, 96%, and 98% for equine PM, OAM, and IAM, respectively, and greater than or equal to 80%, 94%, and 97% for bovine PM, OAM, and IAM, respectively. GalTase activity was assayed under optimal conditions in all membrane preparations and was preferentially localized to the isolated PM both in equine and in bovine spermatozoa. The selective localization of GalTase to the sperm PM in two other species suggest that it may serve as a generalized gamete receptor during initial sperm-egg binding in mammals.  相似文献   

5.
The biosynthetic route of the key plant hormone, indole-3-acetic acid (IAA) has confounded generations of biologists. Evidence in higher plants has implicated two auxin intermediates with roles established in bacteria: indole-3-acetamide (IAM) and indole-3-pyruvic acid. Herein, the IAM pathway is investigated in pea (Pisum sativum), a model legume. The compound was not detected in pea tissue, although evidence was obtained for its presence in Arabidopsis, tobacco, and maize. Deuterium-labeled tryptophan was not converted to IAM in pea roots, despite being converted to IAA. After feeds of deuterium-labeled IAM, label was recovered in the IAA conjugate IAA-aspartate (IAAsp), although there was little or no labeling of IAA itself. Plants treated with IAM did not exhibit high-IAA phenotypes, and did not accumulate IAA. This evidence, taken together, indicates that although exogenous IAM may be converted to IAA (and further to IAAsp), the IAM pathway does not operate naturally in pea roots.  相似文献   

6.
A consequence of the acrosome reaction is to expose the inner acrosomal membrane (IAM), which is a requirement for the sperm's ability to secondarily bind to and then penetrate the zona pellucida (ZP) of the mammalian oocyte. However, the proteins on the IAM responsible for binding and presumably penetrating the zona have not been identified. This issue can be resolved if direct information is made available on the composition of the IAM. For this purpose, we devised a methodology in order to obtain a sperm head fraction consisting solely of the IAM bound to the detergent-resistant perinuclear theca. On the exposed IAM surface of this fraction, we defined an electron dense protein layer that we termed the IAM extracellular coat (IAMC), which was visible on sonicated and acrosome-reacted sperm of several mammalian species. High salt extraction removed the IAMC coincident with the removal of a prominent 38 kDa polypeptide, which we termed IAM38. Antibodies raised against this polypeptide confirmed its presence in the IAMC of intact, sonicated and acrosome-reacted sperm. By immunoscreening of a bovine testicular cDNA library and sequencing the resulting clones, we identified IAM38 as the equivalent of porcine Sp38 [Mori, E., Kashiwabara, S., Baba, T., Inagaki, Y., Mori, T., 1995. Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev. Biol., 168, 575-583], an intra-acrosomal protein with ZP-binding ability, whose precise localization in sperm was unknown. The blockage of IVF at the level of the zona with anti-IAM38 antibodies and the retention of IAM38 after sperm passage through the zona support its involvement in secondary sperm-zona binding. This study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM for identifying other candidates for sperm-zona interactions.  相似文献   

7.
The fact that Nocardia amarae YK1 produced a bacterial flocculation-inducing substance (designated as FIX) was discovered. FIX had a function of flocculating proliferous cells. FIX-induced flocculation was inhibited by making cells resting, but not completely by adding chloramphenicol. FIX worked widely on Gram-positive to -negative bacteria. In the presence of FIX, Achromobacter cycloclastus IAM1013, Acinetobacter calcoaceticus IAM1517, Bacillus subtilis IAM1069, Escherichia coli C600-1, E. coli IAM1239, Flavobacterium lutescens IAM1667, Klebsiella pneumoniae IAM1102, Micrococcus luteus IAM1313 and Pseudomonas putida IAM1002 formed flocs. B. cereus IAM1029, however, exhibited no flocculation.  相似文献   

8.
The pressure resistances of the spores of six Bacillus strains were examined at 5 to 10(deg)C and were compared with their heat resistances. The pressure treatments (at 981 MPa for 40 min and at 588 MPa for 120 min) did not inactivate the spores of B. stearothermophilus IAM12043, B. subtilis IAM12118, and B. licheniformis IAM13417. However, these spores had large differences in heat resistance. The spores of B. megaterium IAM1166 were 9.3 times more pressure resistant but 246 times less heat resistant than those of B. stearothermophilus IAM11001. The spores of B. coagulans IAM1194 were activated by the pressure treatments. There was no correlation between these pressure and heat resistances.  相似文献   

9.
PH-20 protein on the plasma membrane (PH-20PM) is restricted to the posterior head of acrosome-intact guinea pig sperm. During the exocytotic acrosome reaction the inner acrosomal membrane (IAM) becomes continuous with the posterior head plasma membrane, and PH-20PM migrates to the IAM. There it joins a second population of PH-20 protein localized to this region of the acrosomal membrane (PH-20AM) (Cowan, A.E., P. Primakoff, and D.G. Myles, 1986, J. Cell Biol. 103:1289-1297). To investigate how the localized distributions of PH-20 protein are maintained, the lateral mobility of PH-20 protein on these different membrane domains was determined using fluorescence redistribution after photobleaching. PH-20PM on the posterior head of acrosome-intact sperm was found to be mobile, with a diffusion coefficient and percent recovery typical of integral membrane proteins (D = 1.8 X 10(-10) cm2/s; %R = 73). This value of D was some 50-fold lower than that found for the lipid probe 1,1-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (C14diI) in the same region (D = 8.9 X 10(-9) cm2/s). After migration to the IAM of acrosome-reacted sperm, this same population of molecules (PH-20PM) exhibited a 30-fold increase in diffusion rate (D = 4.9 X 10(-9) cm2/s; %R = 78). This rate was similar to diffusion of the lipid probe C14diI in the IAM (D = 5.4 X 10(-9) cm2/s). The finding of free diffusion of PH-20PM in the IAM of acrosome-reacted sperm supports the proposal that PH-20 is maintained within the IAM by a barrier to diffusion at the domain boundary. The slower diffusion of PH-20PM on the posterior head of acrosome-intact sperm is also consistent with localization by barriers to diffusion, but does not rule out alternative mechanisms.  相似文献   

10.
The gene encoding a thermostable peroxidase was cloned from the chromosomal DNA of Bacillus stearothermophilus IAM11001 in Escherichia coli. The nucleotide sequence of the 3.1-kilobase EcoRI fragment containing the peroxidase gene (perA) and its flanking region was determined. A 2,193-base-pair open reading frame encoding a peroxidase of 731 amino acid residues (Mr, 82,963) was observed. A Shine-Dalgarno sequence was found 9 base pairs upstream from the translational starting site. The deduced amino acid sequence coincides with those of the amino terminus and four peptides derived from the purified peroxidase of B. stearothermophilus IAM11001. E. coli harboring a recombinant plasmid containing perA produced a large amount of thermostable peroxidase which comigrated on polyacrylamide gel electrophoresis with the B. stearothermophilus peroxidase. The peroxidase of B. stearothermophilus showed 48% homology in the amino acid sequence to the catalase-peroxidase of E. coli.  相似文献   

11.
As a consequence of the acrosomal reaction during fertilization, the inner acrosomal membrane (IAM) becomes exposed and forms the leading edge of the sperm for adhesive binding to and subsequent penetration of the zona-pellucida (ZP) of the metaphase-II-arrested oocyte. A premise of this review is that the IAM of spermatozoa anchors receptors and enzymes (on its extracellular side) that are required for sperm attachment to and penetration of the ZP. We propose a sperm cell fractionation strategy that allows for direct access to proteins bound to the extracellular side of the IAM. We review the types of integral and peripheral IAM proteins that have been found by this approach and that have been implicated in ZP recognition and lysis. We also propose a scheme for the origin and assembly of these proteins within the developing acrosome during spermiogenesis. During development, the extravesicular side of the membrane of the acrosomic vesicle is coated by peripheral proteins that transport and bind this secretory vesicle to the spermatid nucleus. The part of the membrane that binds to the nucleus becomes the IAM, while its extravesicular protein coat, which is retained between the IAM and the nuclear envelope of spermatozoa becomes the subacrosomal layer of the perinuclear theca (SAL-PT). Another premise of this review is that the IAM of spermatozoa is bound with proteins (on its intracellular side), namely the SAL-PT proteins, which hold the clue to the mechanism of acrosomal-nuclear docking. We propose a sperm cell fractionation strategy that allows for direct access to SAL-PT proteins. We then review the types of SAL-PT proteins that have been found by this approach and that have been implicated in transporting and binding the acrosome to the sperm nucleus.  相似文献   

12.
The inner acrosomal membrane (IAM) develops during the spermatid stage of differentiation as that portion of the Golgi-derived acrosome granule that tightly associates with the condensing sperm nucleus. In some mammalian species, an electron-dense proteinaceous material accumulates between the IAM and the nuclear envelope, collectively comprising the "perforatorium." Evidence, including its partial purification and its structural resistance to detergents and sonication, suggests that the IAM is an unusually resiliant membrane. Dense paracrystalline arrays of intramembranous particles, a lack of lectin-mediated receptor modulation, and its lack of participation in sperm-egg fusion suggest that the IAM lacks the same degree of fluidity as the egg surface plasmalemma. Observations using monoclonal antibodies, however, suggest that some specific antigenic modulations may be possible within the IAM. Its structural rigidity is of obvious mechanical value during sperm penetration through the zone pellucida. An additional role as a scaffold for putative zona lysin material remains controversial. Biochemical evidence suggests that acrosin, for example, is not entirely soluble and that some remains sperm-associated, depending on the conditions of acrosome disruption. Nevertheless, morphological studies do not agree on acrosin's specific localization to the IAM. Currently there is only very limited information concerning the localization of the other acrosomal enzymes to the IAM. Another possible role for the IAM in some species may be in recognizing the zona pellucida. Evidence for this derives from the observation that fucoidin, a fucose heteropolysaccharide, inhibits guinea pig sperm-zona binding, and bound fucoidin can be localized to the IAM and equatorial regions of the living acrosome-reacted spermatozoa. Finally, the IAM may have a role in early recognition/adhesion with the colemma.  相似文献   

13.
The auxin-biosynthetic pathway from L-tryptophan to indole-3-aceticadd via indole-3-acetamide (IAM), found in plant-pathogenicbacteria such as Agrobacterium tumefaciens and Pseudomonas savastanoi,has not been found in plants. We attempted to detect the enzymaticactivities for this pathway in cell-free systems from varioustissues of trifoliata orange (Poncirus trifoliata Rafin.). Ahigh level of activity of LAM hydrolase, which catalyzes theconversion of IAM to indole-3-acetic acid, was observed in acrude extract prepared from young fruits one week after fullbloom. Using -naphthaleneacetamide as a competitor of IAM hydrolase,a simple assay system was developed for the detection of theconversion of L-tryptophan to IAM (tryptophan monooxygenaseactivity). When this system was used to assay cell-free extractsof young fruit of P. trifoliata, the conversion of L-tryptophanto IAM was clearly demonstrated by the presence of IAM amongreaction products, as demonstrated by GC/MS analysis and theincorporation of 14C-labeled L-tryptophan into an IAM fraction.This is the first report indicating the presence of an auxin-biosyntheticpathway via IAM in P. trifoliata. Furthermore, it is shown thatboth enzyme activities in auxin biosynthesis increased transientlyduring fruit development. (Received October 9, 1992; Accepted November 2, 1992)  相似文献   

14.
Zhang  Shun  Lei  Xiaocan  Huo  Peng  Liu  Qingyou  Guan  Xiaomei  Jiang  Jianrong  Shi  Deshun  Lu  Fenghua 《Molecular biology reports》2019,46(1):251-259

The binding of exogenous DNA to sperm is a key process for sperm-mediated gene transfer; however, the underlying molecular mechanisms have yet to be elucidated. In the present study, we aimed to identify the DNA binding proteins (DBPs) in rabbit sperm and to gain further understanding of the molecular mechanism of sperm and exogenous DNA interaction. Native polyacrylamide gel electrophoresis was used for separating free sperm proteins and complexes of DNA fragment/sperm proteins. A distinct band was found after Coomassie blue staining, and seven potential proteins were identified by mass spectrometry analysis. An analysis of the physical/chemical properties of the seven proteins revealed that the sperm inner acrosomal membrane protein IAM38 (IAM38) matched the features of the DBPs. Western blotting analysis showed that the IAM38 and CD4 were present in the sperm but not in the seminal plasma. Blocking of the IAM38 impaired the DNA-binding capacity of the sperm. Blocking the CD4 decreased the DNA-uptake capacity of the sperm but did not influence the DNA-binding capacity of the sperm. Moreover, the EGFP-positive embryos and EGFP-positive blastocysts were also decreased after IAM38 blocking or CD4 blocking in comparison with the control group. In conclusion, our results imply that foreign DNA first binds to the transmembrane IAM38 of the sperm plasma membrane and then forms the complex of DNA/IAM38/CD4 with CD4 to complete the transportation of exogenous DNA into the nucleus of sperm.

  相似文献   

15.
Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
An HPLC/GC-MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography-tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20-30 pmol g(-1) fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.  相似文献   

16.
《遗传学报》2020,47(3):157-165
Indole-3-acetamide (IAM) is the first confirmed auxin biosynthetic intermediate in some plant pathogenic bacteria. Exogenously applied IAM or production of IAM by overexpressing the bacterial iaaM gene in Arabidopsis causes auxin overproduction phenotypes. However, it is still inconclusive whether plants use IAM as a key precursor for auxin biosynthesis. Herein, we reported the isolation IAM HYDROLASE 1 (IAMH1) gene in Arabidopsis from a forward genetic screen for IAM-insensitive mutants that display normal auxin sensitivities. IAMH1 has a close homolog named IAMH2 that is located right next to IAMH1 on chromosome IV in Arabidopsis. We generated iamh1 iamh2 double mutants using our CRISPR/Cas9 gene editing technology. We showed that disruption of the IAMH genes rendered Arabidopsis plants resistant to IAM treatments and also suppressed the iaaM overexpression phenotypes, suggesting that IAMH1 and IAMH2 are the main enzymes responsible for converting IAM into indole-3-acetic acid (IAA) in Arabidopsis. The iamh double mutants did not display obvious developmental defects, indicating that IAM does not play a major role in auxin biosynthesis under normal growth conditions. Our findings provide a solid foundation for clarifying the roles of IAM in auxin biosynthesis and plant development.  相似文献   

17.
Covalently closed circular deoxyribonucleic acids were found in 10 strains of Bacillus natto. The plasmids could be classified into four types on the basis of the molecular weights as well as the patterns in agarose gel electrophoresis after digestion with restriction endonucleases: (i) plasmids (seven were detected) with a molecular weight of 3.6 X 10(6); (ii) plasmids (two were detected) with a molecular weight of 4.0 X 10(6); (iii) plasmids (eight were detected) with a molecular weight of about 34 X 10(6); and (iv), a plasmid with an approximate molecular weight of 46 X 10(6). Out of the 10 plasmid-carrying strains, 6 (IFO3009, IFO3013, IFO3335, IFO13169, IAM1143, and IAM1207) harbored both type 1 and 3 plasmids; 2 (IAM1114 and IAM1168) harbored both type 2 and 3 plasmids, and IFO3936 and IAM1163 carried type 1 and 4 plasmids, respectively.  相似文献   

18.
Distribution and purification of aspartate racemase in lactic acid bacteria   总被引:2,自引:0,他引:2  
The distribution of aspartate racemase (EC 5.1.1.13) in various kinds of bacteria demonstrated that the enzyme occurs in lactic acid bacteria, such as Streptococcus species and Lactobacillus species. The enzyme from Streptococcus thermophilus IAM10064 was more thermostable than that from Streptococcus lactis IAM1198 which contained the enzyme most abundantly among the lactic acid bacteria we examined here. We purified the enzyme about 3400-fold to homogeneity from cell-free extract of S. thermophilus, which is composed of two identical subunits with a molecular weight of 28,000 as a homodimer. The enzyme utilizes specifically aspartate as a substrate, but not alanine and glutamate. Maximal reaction velocity was observed at 37 degrees C and around pH 8.0. The sequence of the NH2-terminal amino acids of the enzyme was determined to be Met-Glu-Asn-Phe-Phe-Ser-Ile-Leu-Gly-XXX-Met-Gly-Thr-Met-Ala-Thr-Glu-Ser- Phe-.  相似文献   

19.
20.
【目的】克隆藤黄微球菌Micrococcus luteus IAM 14879(=NCIMB 13267)的复苏促进因子Rpf(resuscitation promoting factor)的基因,在大肠杆菌中表达获取基因重组蛋白,考察对近缘高GC革兰氏阳性菌红球菌Rhodococcus sp.DS471活的非可培养VBNC(viable but non-culturable)菌体的复苏促进生长能力。【方法】抽提制备藤黄微球菌的DNA,确定rpf基因引物进行PCR扩增,利用pET15b质粒载体并转化大肠杆菌DE3表达,以SDS-PAGE检验获取纯化重组蛋白;在培养基中添加Rpf,以MPN(most probable number)法计数、评价对VBNC状态菌体的复苏促进生长效果。【结果】基因测序证实获得藤黄微球菌的rpf基因并在大肠杆菌中表达;SDS-PAGE分析表明获得rpf基因的重组蛋白;该蛋白对处于VBNC状态的红球菌具有近100倍的复苏促进生长能力。【结论】成功克隆了藤黄微球菌的rpf基因,在大肠杆菌中获得了表达,表明了Rpf蛋白对处于VBNC状态的红球菌具有复苏促进生长效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号