首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT. Fine structural studies of a specialized vesicle system associated with the endoplasmic reticulum (ER) of exo-erythrocytic Plasmodium berghei suggest that this system may be the equivalent of a Golgi apparatus. Patches of ER, randomly distributed in the cytoplasm of developing parasites, are formed of smooth and ribosome-studded cisternae intermingled with each other. The vesicle systems are located between as well as at the edges of ER aggregates and appear to be in different stages of budding from the cisternae. Prolonged osmication reveals distinct staining of the nuclear envelope and ER of the parasites as well as part of the Golgi apparatus of the hepatocytes. However, the small vesicles associated with the parasite's ER are unstained, as are the coated vesicles in the Golgi region of the liver cell. These sites in the parasite cytoplasm seem comparable to the concave surface of the Golgi apparatus in liver cells. The pinched-off vesicles fuse with others to form the prominent peripheral vacuolization characteristic of the nearly mature exo-erythrocytic form. The formation of these peripheral vacuoles and their subsequent fusion with the parasite membrane may be an exocytosis mechanism supplying the rapidly expanding parasite with new plasma membrane material.  相似文献   

2.
Sousa M  Azevedo C 《Tissue & cell》1988,20(4):621-628
The fine structure of the spermatogenic cells in the starfish Marthasterias glacialis was studied regarding acrosome formation. The main finding in the spermatogenesis of M. glacialis is that the formation of the pro-acrosomal vesicles seems to be initiated in late spermatogonia. Small dense bodies resulting from the division of large granulofibrillar masses were also observed in the cytoplasm of late spermatogonia. During spermiogenesis the inner acrosomal vesicle membrane becomes coated first with dense materials originated from the cytoplasmic dense bodies and then with cisternae of endoplasmic reticulum. Both coating materials are incorporated in the periacrosomal space of the mature acrosome. Besides being involved in the genesis of the periacrosomal material, cytoplasmic dense bodies were also seen in close relationship with intercellular bridges and midpiece structures of spermatids. These findings are discussed in comparison with other echinoderm spermatogenesis.  相似文献   

3.
We describe a scheme for the purification of the nonclathrin-coated vesicles that mediate transport of proteins between Golgi cisternae and probably from ER to Golgi. These "Golgi-derived coated vesicles" accumulate when Golgi membranes are incubated with ATP and cytosol in the presence of GTP gamma S, a compound that blocks vesicle fusion. The coated vesicles dissociate from the Golgi cisternae in high salt and can then be purified by employing differential and density gradient centrifugation. Golgi-derived coated vesicles have a putative polypeptide composition that is distinct from both cytosol and Golgi membranes, as well as from that of clathrin-coated vesicles.  相似文献   

4.
Abstract

Some ultrastructural features of cells of the marine haptophycean alga, Ochrosphaera neapolitana Schussnig in the palmelloid stage were examined. Chloroplasts which are contained in a compartment isolated from the cytoplasm by ER profiles and nuclear envelope, display trilamellated thylakoids running along the major axis. The stalked pyrenoid with inner bilamellated thylakoids, protrudes in a large membrane-bounded vacuole. Other structures, as the haptonematic and flagellar bases, autophagic vacuoles and mitochondria, are typical of the chrysophycean and haptophycean genera so far investigated.

The Golgi apparatus is represented by a single dictyosome composed of stacked cisternae fonctioning in a way that they form organic scales which constitute the main part of the cell covering. The scales, build up of microfibrils disposed parallel each to other, lie in cisternal lumina of the dictyosomal maturing face; scaly cisternae are numerous in the peripheral cytoplasm and are observed merging in the plasma membrane and discharging the content outside the protoplast.

Dictyosomal activity is evidenced morphologically by massive vesicle production. Three kinds of membrane-bounded vesicles were identified in the present material: i) inner-granulated vesicles, arising from the maturation face; ii) coated vesicles, scattered in the cytoplasm or at the periphery of the golgi body, and iii) dense-cored vesicles, present in the proximity of the maturation face. The possible functional relationships related to scale production and assembly outside the protoplast, and between the nucleus and dictyosome are discussed.  相似文献   

5.
Fine structural studies of a specialized vesicle system associated with the endoplasmic reticulum (ER) of exo-erythrocytic Plasmodium berghei suggest that this system may be the equivalent of a Golgi apparatus. Patches of ER, randomly distributed in the cytoplasm of developing parasites, are formed of smooth and ribosome-studded cisternae intermingled with each other. The vesicle systems are located between as well as at the edges of ER aggregates and appear to be in different stages of budding from the cisternae. Prolonged osmication reveals distinct staining of the nuclear envelope and ER of the parasites as well as part of the Golgi apparatus of the hepatocytes. However, the small vesicles associated with the parasite's ER are unstained, as are the coated vesicles in the Golgi region of the liver cell. These sites in the parasite cytoplasm seem comparable to the concave surface of the Golgi apparatus in liver cells. The pinched-off vesicles fuse with others to form the prominent peripheral vacuolization characteristic of the nearly mature exoerythrocytic form. The formation of these peripheral vacuoles and their subsequent fusion with the parasite membrane may be an exocytosis mechanism supplying the rapidly expanding parasite with new plasma membrane material.  相似文献   

6.
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid‐spermatids. Unlike previous observations, a Golgi complex has been found in mid‐spermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron‐dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron‐dense vesicles are implicated in the formation of an electron‐dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two‐step process, forming the characteristic concentric three‐layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
U. Kristen 《Planta》1977,133(2):161-167
In the ovary of Aptenia cordifolia and Platythyra haeckeliana placentary papillae produce a slime containing polysaccharides and proteins. These papillae show two types of conspicuous vacuoles enclosed by rough ER cisternae and complexes of concentrically arranged rough ER. The enclosed vacuoles probably play an important role in the accumulation of the polysaccharide-protein slime. In the case of storage vesicles (first vacuole type) derivates of the Golgi apparatus are enclosed by ER. In other instances (second vacuole type) ER cisternae which have lost their membrane-bound ribosomes seem to delimit protoplasmic regions free of organelles.
  相似文献   

8.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

9.
The marine centric diatom Biddulphia levis produced uniflagellate fusiform male gametes completely within the parent cell frustule. These gametes lacked both a central pair of microtubules in the flagellar axoneme and chloroplasts but did contain a cone of microtubules which passed posteriorly from the base of the kinetosome along the nuclear envelope. The gametes were released through a specialized pore in the girdle band leaving behind a cytoplasmic mass which contained chloroplasts and other cytoplasmic components. Tubules which resembled the flimmer hairs on the gamete flagellum occurred in cisternae of the cytoplasmic reticulum in the residual cytoplasm and in the nuclear envelope of the gametes. Gametogenesis in B. levis is compared with similar processes in other centric diatoms.  相似文献   

10.
The glucose-6-phosphatase (G6Pase) activity of cytoplasmic components of spermatocytes and spermatids of the rat was examined by electron microscope cytochemistry using cerium chloride as a capture agent. G6Pase activity, a recognized ER-resident enzyme, was present in all ER cisternae of spermatocytes. In spermatids, while some ER cisternae were G6Pase-reactive, others were negative or only slightly reactive, indicating an unequal distribution of the enzymatic activity throughout the network of ER cisternae in these cells. In spermatocytes, the cis- and trans-elements of the stacks of Golgi saccules were slightly but significantly reactive for G6Pase. In the Golgi apparatus of spermatids, the cis-element, 4 or 5 underlying saccules, as well as one or two thick trans Golgi elements were G6Pase reactive. The G6Pase activity of the various Golgi elements, like that of the ER cisternae was not affected by the pH of the medium and was completely inhibited by Na-vanadate, a known G6Pase inhibitor. Sertoli and Leydig cells, submitted to the same cytochemical conditions, showed complete G6Pase reactivity of their ER; however in Sertoli cells, all Golgi components were consistently negative while in Leydig cells the cis- and trans-elements of the Golgi stacks were slightly reactive, as in spermatocytes. Thus, the G6Pase reactivity of Golgi elements, appeared variable from one cell type to another. The compact juxtanuclear Golgi apparatuses of spermatocytes and spermatids were both associated with numerous G6Pase reactive ER cisternae; some were present at their surface, others crossed their cortices between Golgi stacks and formed elaborate networks in their cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo, and two membrane-bound SNARE pairs that specify fusion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6–8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across the Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.  相似文献   

12.
Brefeldin A (BFA) blocks protein export from the endoplasmic reticulum (ER) and causes dismantling of the Golgi cisternae with relocation of resident Golgi proteins to the ER in many cultured cell lines. We examined the effects of BFA on Golgi organization and the distribution of Golgi markers in the rat exocrine pancreas. Immediately after BFA addition, Golgi stacks began to disorganize and Golgi cisternae to vesiculate, and by 15 min no intact Golgi cisternae remained. However, even after prolonged BFA incubation, clusters of small vesicles surrounded by transitional elements of the ER persisted both in the Golgi region and dispersed throughout the apical cytoplasm. These vesicles were morphologically heterogeneous in the density of their content and in the presence of cytoplasmic coats. Immunogold labeling demonstrated that some vesicles within the clusters contained gp58, a cis Golgi marker, and some contained alpha-mannosidase II, a middle/trans Golgi marker in this cell type. Neither marker was detected in the rough ER by immunogold or immunofluorescence labeling. When AlF4- was added during BFA treatment some of the vesicles in the clusters appeared coated. When microsomes were subfractionated into Golgi (light) and rough ER (heavy) fractions on sucrose density gradients, greater than 65% of alpha-mannosidase II and galactosyltransferase activities were found in light fractions (1.14-1.16 g/ml) in both control and BFA-treated lobules. In both cases equally low enzyme activity was recovered in heavier fractions (1.2-1.23 g/ml) containing RNA and alpha-glucosidase activity. However, 5 to 8% of the total recovered RNA consistently codistributed with the Golgi enzyme peak. These results indicate that BFA rapidly inhibits secretion and causes dismantling of the Golgi stacks in pancreatic acinar cells, but clusters of vesicles consisting of bona fide Golgi remnants persist even with prolonged exposure to BFA. Many of the vesicles contain Golgi markers by immunolabeling. By cell fractionation Golgi membrane enzyme activities are recovered in equal amounts in light (Golgi) fractions in both controls and BFA-treated specimens. These findings indicate that in the exocrine pancreas there is a dissociation of BFA's effects on the exocytic pathway: there is a block in transport and Golgi organization is disrupted, but remnant Golgi vesicles and tubules persist and retain Golgi membrane antigens and enzyme activities.  相似文献   

13.
We conducted an ultrastructural and immunocytochemical analysis of the subcellular components involved in mucilage secretion in Closterium. In conventionally fixed cells, the mucilage vesicle appears dense-cored with an electron-dense center surrounded by radiating fibrils. In freeze-substituted cells, the vesicles are highly osmiophilic. These mucilage vesicles are produced from peripheral swellings of the trans face cisternae of the Golgi apparatus (GA). The vesicles apparently move from the GA, found in cytoplasmic depressions between lobes of the plastid, to the sub-plasma membrane peripheral cytoplasm. Here, they become associated with components of the peripheral cytoskeletal network. The mucilage is ultimately released through flask-shaped pores in the cell wall.  相似文献   

14.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   

15.
《The Journal of cell biology》1993,122(6):1197-1206
We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are depolymerized by IQ treatment of NRK cells. We provide evidence that IQ breaks down Golgi membranes regardless of the state of cytoplasmic microtubules. This is evident from our findings that Golgi membranes break down with IQ treatment in the presence of taxol stabilized microtubules. Moreover, in cells where the microtubules are first depolymerized by microtubule disrupting agents which cause the Golgi stacks to separate from one another and scatter throughout the cytoplasm, treatment with IQ causes further breakdown of these Golgi stacks into VGMs. Thus, IQ breaks down Golgi membranes independently of its effect on cytoplasmic microtubules. Upon removal of IQ from NRK cells, both microtubules and Golgi membranes reassemble. The reassembly of Golgi membranes, however, takes place in two sequential steps: the first is a microtubule independent process in which the VGMs fuse together to form stacks of Golgi cisternae. This step is followed by a microtubule-dependent process by which the Golgi stacks are carried to their perinuclear location in the cell. In addition, we have found that IQ has no effect on the structural organization of Golgi membranes at 16 degrees C. However, VGMs generated by IQ are capable of fusing and assembling into stacks of Golgi cisternae at 16 degrees C. This is in contrast to the cells recovering from BFA treatment where, after removal of BFA at 16 degrees C, resident Golgi enzymes fail to exit the ER, a process presumed to require the formation of vesicles. We propose that at 16 degrees C there may be general inhibition in the process of vesicle formation, whereas the process of vesicle fusion is not affected.  相似文献   

16.
Observations on the fine structure of KMnO4-fixed testes of small mammals (guinea pig, rat, and mouse) reveal certain morphological differences between the spermatogenic and Sertoli cells which have not been demonstrated in the same tissue fixed with OsO4. Aggregates of minute circular profiles, much smaller than the spherical Golgi vesicles, are described in close association with the Golgi complex of developing spermatids. Groups of dense flattened vesicles, individually surrounded by a membrane of different dimensions than that which bounds most of the other cell organelles, appear dispersed within the cytoplasm of some spermatogenic cells. Flattened vesicles of greater density than those belonging to the Golgi complex are reported confined to the inner Golgi zone of developing guinea pig spermatids between the Golgi cisternae and the head cap. The profiles of endoplasmic reticulum within spermatocytes appear shorter, wider, and more tortuous than those of Sertoli cells. Minute cytoplasmic particles approximately 300 A in diameter and of high electron opacity appear randomly disposed in some Sertoli cells. Groups of irregular-shaped ovoid bodies within the developing spermatids are described as resembling portions of cytoplasm from closely adjacent spermatids. Interpretation is presented regarding the fine structure of KMnO4-fixed testes in view of what has already been reported for mammalian testes fixed in OsO4.  相似文献   

17.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

18.
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.  相似文献   

19.
Understanding vesicle trafficking to and through the Golgi stack has been greatly elucidated recently, but the question of what holds the endoplasmic reticulum (ER) and Golgi stack together in many cell types and an explanation of anterograde trafficking in the ER-Golgi transitional zone have not yet been adequately explained. We have studied these problems using both the thin sectioning and the quick-freeze deep-etch (QF-DE) technique on Paramecium cells harvested at different culture ages. Although the Golgi apparatus of Paramecium is made up of many sets of more reduced stacks of cisternae than those of many mammalian cells, the stacks in Paramecium always bear a close relationship to a transitional element of the ER from which non-clathrin-coated transition vesicles arise. In QF-DE replicas two networks of filaments are clearly shown; one is in this ER-Golgi transition zone and the other is on the trans side of the Golgi stack. The network associated with the trans-Golgi region links a number of vesicular elements. The network in the transition zone spans the distance between the ER and the cis-cisterna of the Golgi stack and has branches extending to the coats of the enmeshed nonclathrin-coated transition vesicles. These coats consist of a layer of 11-nm globular elements (the same size as coatomer complexes) which surround the 40-nm-diameter transition vesicles. We conclude that the filamentous network holds the ER and Golgi stack together and prevents the dispersal of the transition vesicles away from this zone. This network may also delineate and stabilize the transitional element within the ER and, finally, help organize anterograde transition vesicle trafficking in this ER-Golgi transition zone.  相似文献   

20.
ADP-ribosylation factor (ARF) is an abundant and highly conserved low molecular weight GTP-binding protein that was originally identified as a key element required for the action of cholera toxin in mammalian cells, but whose physiological role is unknown. We report that ARF family proteins are highly concentrated in non-clathrin-coated transport vesicles and are coat proteins. About three copies of ARF are present on the outside of coated vesicles per alpha-COP (and thus per coatomer). ARF is highly enriched in coated vesicles as compared with parental Golgi cisternae, as shown both by biochemical and morphological methods, and ARF is removed from transport vesicles through uncoating during transport. Furthermore, ARF binds to Golgi cisternae in a GTP-dependent manner independently of coated vesicle budding. These observations strongly suggest a new role for GTP-binding proteins: ARF proteins may modulate vesicle budding and uncoating through controlled GTP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号