首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute rates of total protein synthesis and tubulin synthesis during oogenesis and early embryogenesis in the mouse have been determined by measuring specific activities of the endogenous methionine pool and rates of incorporation of [35S]methionine into total protein and tubulin. The absolute rate of protein synthesis decreases from 43 to 33 pg/hr/oocyte during meiotic maturation, while the size of the endogenous methionine pool remains essentially unchanged at 65 fmole/oocyte (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978, Proc. Nat. Acad. Sci. USA,75, 4160). The one-cell mouse embryo synthesizes protein at a rate of 45 pg/hr/embryo, so that fertilization is accompanied by about a 40% increase in the absolute rate of total protein synthesis. The eight-cell compacted embryo synthesizes protein at the rate of 51 pg/hr/embryo. The size of the endogenous methionine pool increases dramatically during early embryogenesis, from 74 fmole in the unfertilized ovum to 137 and 222 fmole in the one-cell embryo and eight-cell compacted embryo, respectively. Tubulin is one of the major proteins synthesized by the mouse oocyte and embryo since the absolute rate of tubulin synthesis is, on the average, 1.3% that of total protein synthesis. The absolute rate of tubulin synthesis decreases from 0.61 to 0.36 pg/hr/oocyte during meiotic maturation and then increases to 0.60 pg/hr/embryo in the one-cell embryo and to 0.66 pg/hr/embryo in the eight-cell compacted embryo. During meiotic maturation and early embryogenesis the direction and magnitude of changes in the rate of tubulin synthesis closely parallel those of total protein synthesis. Although equimolar amounts of tubulin subunits are present in microtubules, the ratio of the absolute rate of synthesis of the β subunit to that of the α subunit is about 2.0 throughout meiotic maturation and early embryogenesis.High-resolution two-dimensional gel electrophoretic analysis of [35S]methionine-labeled proteins reveals that many of the newly synthesized proteins that first appear during meiotic maturation of the oocyte continue to be synthesized in the one-cell embryo. Nearly all of the proteins synthesized in the one-cell embryo are also synthesized in the unfertilized ovum, although some changes in the pattern of protein synthesis are associated with fertilization. Therefore, the developmental program for early embryogenesis in the mouse appears to be activated during meiotic maturation of the oocyte. These results are compared with those obtained using oocytes and embryos from nonmammalian animal species.  相似文献   

2.
Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development.  相似文献   

3.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

4.
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that regulate multiple stages of mitosis. Expression and distribution of polo-like kinase 1 (Plk1) were characterized during porcine oocyte maturation, fertilization and early embryo development in vitro, as well as after microtubule polymerization modulation. The quantity of Plk1 protein remained stable during meiotic maturation. Plk1 accumulated in the germinal vesicles (GV) in GV stage oocytes. After germinal vesicle breakdown (GVBD), Plk1 was localized to the spindle poles at metaphase I (MI) stage, and then translocated to the middle region of the spindle at anaphase-telophase I. Plk1 was also localized in MII spindle poles and on the spindle fibers and on the middle region of anaphase-telophase II spindles. Plk1 was not found in the spindle region when colchicine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. After fertilization, Plk1 concentrated around the female and male pronuclei. During early embryo development, Plk1 was found to be in association with the mitotic spindle at metaphase, but distributed diffusely in the cytoplasm at interphase. Our results suggest that Plk1 is a pivotal regulator of microtubule organization and cytokinesis during porcine oocyte meiotic maturation, fertilization, and early embryo cleavage in pig oocytes.  相似文献   

5.
Oogenesis is a complex process regulated by a vast number of intra- and extra-ovarian factors. Oogonia, which originate from primordial germ cells, proliferate by mitosis and form primary oocytes that arrest at the prophase stage of the first meiotic division until they are fully-grown. Within primary oocytes, synthesis and accumulation of RNAs and proteins throughout oogenesis are essential for oocyte growth and maturation; and moreover, crucial for developing into a viable embryo after fertilization. Oocyte meiotic and developmental competence is gained in a gradual and sequential manner during folliculogenesis and is related to the fact that the oocyte grows in interaction with its companion somatic cells. Communication between oocyte and its surrounding granulosa cells is vital, both for oocyte development and for granulosa cells differentiation. Oocytes depend on differentiated cumulus cells, which provide them with nutrients and regulatory signals needed to promote oocyte nuclear and cytoplasmic maturation and consequently the acquisition of developmental competence.The purpose of this article is to summarize recent knowledge on the molecular aspects of oogenesis and oocyte maturation, and the crucial role of cumulus–cell interactions, highlighting the valuable contribution of experimental evidences obtained in animal models. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

6.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

7.
8.
Oocyte development in several nonmammalian species is characterized by the synthesis of large quantities of ribonucleic acids during lampbrush stages of meiosis. These are stored in the oocyte and used during later oocyte maturation and early embryogenesis. This autoradiographic study examined the incorporation and persistence of ribonucleic acid in mouse oocytes during comparable stages of development. At each age examined, fetal through juvenile, the radiolabeled RNA precursors were incorporated into mouse oocytes during the growth stages. The RNAase-digestible label appeared first over nucleoli and meiotic chromosomes, becoming cytoplasmic after 24 hours, and remaining cytoplasmic through all remaining stages. Once incorporated the label persisted during subsequent oocyte growth and maturation through preimplantation embryo stages with apparently undiminished levels. It is suggested that this persistently labeled RNA represents maternal RNA stored for use during early embryonic development.  相似文献   

9.
Aurora-A is a serine/threonine protein kinase that plays important regulatory roles during mitotic cell cycle progression. In this study, Aurora-A expression, subcellular localization, and possible functions during porcine oocyte meiotic maturation, fertilization and early embryonic cleavage were studied by using Western blot, confocal microscopy and drug treatments. The quantity of Aurora-A protein remained stable during porcine oocyte meiotic maturation. Confocal microscopy revealed that Aurora-A distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, Aurora-A concentrated around the condensed chromosomes and the metaphase I spindle, and finally, Aurora-A was associated with spindle poles during the formation of the metaphase II spindle. Aurora-A concentrated in the pronuclei in fertilized eggs. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. In conclusion, Aurora-A may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during porcine oocyte meiotic maturation, fertilization and early embryonic mitosis.  相似文献   

10.
The Xenopus D7 gene codes for a novel protein whose expression is restricted to early development. D7 protein is synthesized for the first time during oocyte maturation (1988, Genes Dev. 2, 1296-1306). Injection of D7 RNA into the full-grown oocyte and its subsequent translation into D7 protein neither induced oocyte maturation nor affected the kinetics of hormone-induced maturation. Overexpression of D7 protein by 20-fold in the early Xenopus embryo by injection of D7 RNA into fertilized eggs did not affect subsequent development. Oocytes specifically lacking D7 mRNA were generated by oligodeoxynucleotide-mediated RNA destruction within the oocyte. Unfertilized eggs generated from such oocytes lacked detectable D7 protein, but nevertheless could be activated and fertilized. Embryos generated from such eggs, estimated to contain less than 5% of wildtype levels of D7 protein, developed normally up to the tailbud stage. Thus the D7 protein, the product of a maternal mRNA that is under strict translational repression in oocytes, appears not to be required for oocyte maturation, activation, fertilization or early embryonic development in Xenopus.  相似文献   

11.
Fully grown germinal vesicle-stage oocytes are induced to resume meiosis and acquire the capacity to undergo fertilization in response to a surge of gonadotropins. The present study examined possible direct and indirect roles of gonadotropins in the maturation and fertilization of rat oocytes by determining 1) the effect of exogenous administration of gonadotropins (priming) to immature rats prior to oocyte collection on the capacity of oocytes to undergo maturation and fertilization in vitro, 2) the effect of follicle-stimulating hormone (FSH) in the maturation media on the resumption of meiosis and subsequent capacity of oocytes to undergo fertilization, and 3) the capacity of oocytes to undergo maturation and fertilization following culture in preovulatory follicular fluid or in conditioned media obtained from gonadotropin-stimulated granulosa cell (GC) cultures. In the first experiment, oocytes from unprimed rats underwent spontaneous meiotic maturation in vitro and 17% underwent subsequent fertilization. Priming increased the proportion of oocytes undergoing fertilization. Maturation of oocytes in media supplemented with various concentrations of FSH or for various lengths of time (6-16 h) in medium with 500 ng FSH/ml indicated that FSH slowed the rate of meiotic maturation, but had no effect on the capacity of the oocytes to be fertilized. Oocytes obtained from primed animals and cultured in the presence of preovulatory follicular fluid were fertilized in proportions similar to those cultured in serum-containing medium. In the third experiment, medium conditioned by FSH-stimulated GC for 40 h slowed the rate of meiotic maturation; the addition of luteinizing hormone (LH) to the FSH-stimulated cells produced a medium in which the rate of oocyte maturation was not different from that of control oocytes (in medium from unstimulated cells). Medium conditioned by FSH- or LH-stimulated GC, but not fibroblasts, increased the proportions of oocytes undergoing fertilization following maturation in those media. FSH + LH stimulation of GC increased the fertilization of oocytes to proportions significantly higher than with either gonadotropin alone. These data suggest that GC respond to gonadotropin stimulation by providing a factor(s) that regulates the rate of oocyte maturation and promotes the capacity of oocytes to undergo fertilization.  相似文献   

12.
13.
Oocyte maturation is a complex process during which epigenetic modifications are dramatically changed, especially histone acetylation and phosphorylation. We have investigated the effects of NaBu (sodium butyrate), a natural HDAC (histone deacetylase) inhibitor, on porcine oocyte maturation at different stages and subsequent embryonic development to improve IVF (in vitro fertilization) and embryo production. COCs (cumulus oocyte complexes) were cultured, IVM (in vitro maturation) supplemented with 1 mM NaBu before or after GVBD [GV (germinal vesicle) breakdown] during maturation. NaBu delayed oocyte meiosis in the GV and GVBD stages in an exposure-dependent manner. However, the short treatment with 1 mM NaBu after GVBD significantly improved the meiotic competence. No positive effects of NaBu on GSH levels and subsequent embryonic development following IVF were seen. Transient exposure to NaBu after GVBD improves meiotic competence, but not subsequently, probably by having an effect on histone acetylation during oocyte maturation.  相似文献   

14.
15.
Compared with oocytes matured in vivo, in vitro-matured oocytes are compromised in their capacity to support early embryo development. Delaying spontaneous in vitro meiotic maturation using specific phosphodiesterase (PDE) isoenzyme inhibitors may permit more complete oocyte cytoplasmic maturation, possibly by prolonging cumulus cell (CC)-oocyte gap junctional communication during meiotic resumption. This study aimed to investigate the effect of the isoenzyme 3- (oocyte) and isoenzyme 4- (granulosa cell) specific PDE inhibitors on the kinetics of in vitro maturation and on subsequent oocyte developmental competence. Cumulus-oocyte complexes from antral bovine follicles were isolated and cultured in the presence of the specific PDE inhibitors milrinone (type 3) or rolipram (type 4) (100 microM). In the presence of FSH, both PDE inhibitors only slightly extended CC-oocyte gap junctional communication over the first 9 h, but they completely blocked meiotic resumption during this period (P < 0.001). The indefinite inhibitory effect of milrinone on meiotic resumption (30% at germinal vesicle stage after 48 h) was overridden by 24 h when treated with FSH, but not with hCG, suggesting a form of induced meiotic resumption. Oocytes treated with FSH with or without either PDE inhibitor were inseminated at either 24, 26, or 28 h. Treated with either the type 3 or type 4 PDE inhibitor significantly (P < 0.05) increased embryo development to the blastocyst stage by 33%-39% (to an average of 52% blastocysts) compared with control oocytes (38%) after insemination at 28 h, and significantly (P < 0.05) increased blastocyst cell numbers when inseminated at 24 h. These results suggest that delayed spontaneous meiotic maturation, coupled with extended gap junctional communication between the CCs and the oocyte has a positive effect on oocyte cytoplasmic maturation, thereby improving oocyte developmental potential.  相似文献   

16.
MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division.  相似文献   

17.
Dynamic anchoring of PKA is essential during oocyte maturation   总被引:3,自引:0,他引:3  
In the final stages of ovarian follicular development, the mouse oocyte remains arrested in the first meiotic prophase, and cAMP-stimulated PKA plays an essential role in this arrest. After the LH surge, a decrease in cAMP and PKA activity in the oocyte initiates an irreversible maturation process that culminates in a second arrest at metaphase II prior to fertilization. A-kinase anchoring proteins (AKAPs) mediate the intracellular localization of PKA and control the specificity and kinetics of substrate phosphorylation. Several AKAPs have been identified in oocytes including one at 140 kDa that we now identify as a product of the Akap1 gene. We show that PKA interaction with AKAPs is essential for two sequential steps in the maturation process: the initial maintenance of meiotic arrest and the subsequent irreversible progression to the polar body extruded stage. A peptide inhibitor (HT31) that disrupts AKAP/PKA interactions stimulates oocyte maturation in the continued presence of high cAMP. However, during the early minutes of maturation, type II PKA moves from cytoplasmic sites to the mitochondria, where it associates with AKAP1, and this is shown to be essential for maturation to continue irreversibly.  相似文献   

18.
Polo-like kinase 1 (Plk1) is a family of serine/threonine protein kinases that play important regulatory roles during mitotic cell cycle progression. In this study, Plk1 expression, subcellular localization, and possible functions during rat oocyte meiotic maturation, fertilization, and embryonic cleavages were studied by using RT-PCR, Western blot, confocal microscopy, drug-treatments, and antibody microinjection. Both the mRNA and protein of this kinase were detected in rat maturing oocytes and developing embryos. Confocal microscopy revealed that Plk1 distributed abundantly in the nucleus at the germinal vesicle (GV) stage, was associated with spindle poles during the formation of M-phase spindle, and was translocated to the spindle mid-zone at anaphase. In fertilized eggs, Plk1 was strongly stained in the cytoplasm between the apposing male and female pronuclei, from where microtubules radiated. Throughout cytokinesis, Plk1 was localized to the division plane, both during oocyte meiosis and embryonic mitosis. The specific subcellular distribution of Plk1 was distorted after disrupting the M-phase spindle, while additional aggregation dots could be induced in the cytoplasm by taxol, suggesting its intimate association with active microtubule assembly. Plk1 antibody microinjection delayed the meiotic resumption and blocked the emission of polar bodies. In conclusion, Plk1 may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during rat oocyte meiotic maturation, fertilization, and early embryonic mitosis.  相似文献   

19.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

20.
Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号