首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
《Proteins》2024,92(5):688-688
The above article, published online on 12 June 2020 in Wiley Online Library ( wileyonlinelibrary.com ), has been retracted by agreement between the authors, the journal's Editor-in-Chief Dr. Nikolay Dokholyan, and John Wiley & Sons, Inc. The above article is a humorous editorial contribution surrounding a specialized topic, and was not intended for full online publication as part of the journal's scholarly content. Due to an editorial mistake, the above article was published online in Early View. John Wiley & Sons, Inc. takes full responsibility for the erroneous publication of this article.  相似文献   

7.
8.
9.
10.
We describe methods and issues that are relevant to the measurement of change in tumor uptake of 18F-fluorodeoxyglucose (FDG) or other radiotracers, as measured from positron emission tomography/computed tomography (PET/CT) images, and how this would relate to the establishment of PET/CT tumor imaging as a biomarker of patient response to therapy. The primary focus is on the uptake of FDG by lung tumors, but the approach can be applied to diseases other than lung cancer and to tracers other than FDG. The first issue addressed is the sources of bias and variance in the measurement of tumor uptake of FDG, and where there are still gaps in our knowledge. These are discussed in the context of measurement variation and how these would relate to the early detection of response to therapy. Some of the research efforts currently underway to identify the magnitude of some of these sources of error are described. In addition, we describe resources for these investigations that are being made available through the Reference Image Database for the Evaluation of Response project. Measures derived from PET image data that might be predictive of patient response as well as the additional issues that each of these metrics may encounter are described briefly. The relationship between individual patient response to therapy and utility for multicenter trials is discussed. We conclude with a discussion of moving from assessing measurement variation to the steps necessary to establish the efficacy of PET/CT imaging as a biomarker for response.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Understanding how the brain works requires a delicate balance between the appreciation of the importance of a multitude of biological details and the ability to see beyond those details to general principles. As technological innovations vastly increase the amount of data we collect, the importance of intuition into how to analyze and treat these data may, paradoxically, become more important.
This Essay is part of the "Where Next?" Series.
Experimental biologists collect details. In the early days, naturalists prowled their backyards, local forests, and meadows. They traveled the Amazon River and African savannahs and collected species and categorized them. These collectors of beetles and ferns then tried to formulate hypotheses about evolutionary relationships by looking at commonalities of structure, function, and development. In those days, there was an implicit belief that the passionate acquisition of detailed information about the idiosyncrasies of individual species contained the route to understanding the general principles of life. Although today’s experimental neuroscientists employ much more sophisticated methods, most retain a deep conviction that the specific properties of molecules, synapses, neurons, circuits, and connectomes are important for understanding how brains, be they small or large, work.Modern neuroscience traces much of its history to prescient physiologists, pharmacologists, and anatomists. Early anatomists such as Ramón y Cajal pioneered the use of stains to reveal the structure of neurons and to make astonishing leaps of intuition about the structure and function of brain circuits [1]. Early physiologists and pharmacologists deduced the existence of receptors and kinetics from bioassays [2,3]. Observation and reasoning from first principles led T. Graham Brown [4,5] to first articulate that reciprocal inhibition in the spinal cord could underlie the generation of rhythmic movements. Cajal and Brown anticipated systems neuroscience as we know it today: understanding how the particular properties of neurons and their connections give rise to the complex and adaptive responses that allow animals to interact with each other and their worlds.  相似文献   

19.
Citizen science projects have the potential to advance science by increasing the volume and variety of data, as well as innovation. Yet this potential has not been fully realized, in part because citizen science data are typically not widely shared and reused. To address this and related challenges, we built CitSci.org (see www.citsci.org), a customizable platform that allows users to collect and generate diverse datasets. We hope that CitSci.org will ultimately increase discoverability and confidence in citizen science observations, encouraging scientists to use such data in their own scientific research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号