首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Embryos of the viviparous goodeid fish Ameca spendens develop within the ovarian lumen, where they establish a placental association with the maternal organism and undergo a 15,000% increase in embryonic dry weight. The placenta consists of an embryonic component, the trophotaeniae, and a maternal component, the internal ovarian epithelium. Examination with light microscopy and with transmission and scanning electron microscopy reveals that trophotaeniae of A. splendens are extraembryonic membranes consisting of five ribbon-like processes originating from a tube-like mass of tissue that extends outward from the perianal region of developing embryos. There are two sets of lateral processes and a longer single median process. Trophotaeniae possess an outer epithelium that surrounds a highly vascularized core of loose connective tissue. Epithelial cells possess apical microvilli and a pronounced endocytotic apparatus. Cells of the trophotaenial epithelium are either tightly apposed along their lateral margins or separated by enlarged intercellular spaces. Regions of the trophotaenial epithelium possessing enlarged intercellular spaces are distributed in patches. The trophotaenial epithelium is continuous with the embryonic hindgut epithelium and is considered to be derived from it. Comparison of trophotaenial morphology in A. splendens with that reported in Xenotoca eiseni reveals differences in histological organization. The former possess unsheathed trophotaeniae, whereas the latter are sheathed. We postulate that the apposition of trophotaenial epithelium to the internal ovarian epithelium constitutes a placental association equivalent to a noninvasive, epithelioform of an inverted yolk sac placenta. Structural relationships of embryonic and maternal tissues of the trophotaenial placenta are discussed in relation to maternal-embryonic nutrient transfer processes.  相似文献   

2.
Embryos of most species within the viviparous teleost family Goodeidae develop characteristics perianal processes that are considered to be derivatives of the embryonic hindgut. These processes, termed trophotaeniae, are covered with an epithelium that is continuous with the absorptive epithelium lining the hindgut. Gestation is intraovarian, and trophotaeniae mediate the uptake of maternally provided nutrients into the embryo from the ovarian fluid. Ultrastructural examination of the trophotaeniae of four goodeid species reveals substantial diversity in the organization of the epithelium within the family. The trophotaeniae of Alloophorus robustus, Zoogoneticus quitzeoensis, and Ilyodon furcidens have morphological features associated with the endocytosis of macromolecules and can be shown to endocytose the exogenous protein tracer horseradish peroxidase (HRP) rapidly. The trophotaenial epithelia of these species differ from one another with respect to other morphological features such as cell height, organization of the brush border, and the complexity of the intercellular spaces. The trophotaeniae of Goodea atripinnis lack an endocytotic apparatus and do not endocytose HRP. However, the overall organization of G. atripinnis trophotaenial cells suggests a function as a transporting epithelium. The cells have a dense brush border, numerous mitochondria, and many mitochondria that are enveloped by lamellar sheets of intracellular membrane. Post-fixation with osmium and potassium ferrocyanide reveals a marked difference in the complexity of the subepithelial connective tissue. Alloophorus robustus and Z. quitzeoensis exhibit an extremely electron-dense ground substance containing many acellular components. Goodea atripinnis exhibits an electron-lucid ground substance with few acellular components. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Prepartum embryos obtained from old museum specimens of the ovo-viviparous fish, Oligopus longhursti, possess external intestinal appendages. They are structurally identical to the trophotaeniae described by Turner ('37) and Mendoza ('37) in goodeid fishes. This is the first report of trophotaeniae in the viviparous ophidioids. Two developmental Stages, A and B, were observed. A is a tailbud stage, 2.0-2.25 mm in length, and B is a finfold embryo, 3.0-3.25 mm in length (Wourms and Bayne, '73). Trophotaeniae occur in the form of a single median anterior process and a pair of median posterior processes. They originate from a conspicuous peduncle formed around the anus. The processes of stage A are 1.5-2.0 mm long, 0.05 mm in diameter at their base and 0.04 mm at their tip. The stage B processes are 2.75-3.00 mm long, 0.075 mm in diameter at their base and 0.050 mm at their tip. Serial sections show that the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the trophotaeniae is continuous with and identical to the surface epithelium of the embryonic gut. Examination both by transmission and scanning electron microscopy confirms that the apical surface of the trophotaenial epithelium and intestinal epithelium are covered with microvilli. Trophotaeniae are considered to function in the uptake of nutrients since they are structurally identical to intestinal epithelial cells. We suggest that maternal nutrients absorbed by trophotaeniae rather than yolk reserves are the principal source of embryonic metabolites. Trophotaeniae may afford a selective advantage since their existence in O. longhursti maximizes the number of large size embryos which a female can produce at one time. Occurrence of trophotaeniae in ophidioid, goodeid and zoarcid embryos is a remarkable example of convergent evolution.  相似文献   

4.
Embryonic growth and trophotaenial development are examined in two species of goodeid fish, Ameca splendens and Goodea atripinnis. During gestation of A. splendens, embryonic dry mass may increase from 0.21 mg at the onset of development to 31.70 mg at term. In G. atripinnis, embryonic dry mass ranges from 0.25 mg at the onset of development to 3.15 mg at term. Increase in mass is primarily due to the uptake of maternally derived nutrients by trophotaeniae, externalized embryonic gut derivatives. Trophotaenial development in both species is divisible into five phases. During the first phase, the anus is formed. The second phase involves dilation of the anus, enlargement of the perianal lips, differentiation of the hindgut absorptive epithelium, and formation of the trophotaenial peduncle. The third phase is characterized by a further marked hypertrophy and lateral expansion of the perianal lips that results in the formation of short trophotaenial processes. During the fourth phase, there is continued outward expansion of the inner mucosal surface of the trophotaenial peduncle that results in its eversion and lobulation. Placental function is established by this phase. Axial elongation and dichotomous branching of trophotaenial processes occurs during the fifth phase. Development of rosette and ribbon trophotaeniae differ in the degree of axial elongation during the fifth and final phase.  相似文献   

5.
Scanning electron microscopy reveals that the flat tongue of Platemys pallidipectoris has shallow grooves and no lingual papillae. The surface of the tongue is covered with dome-shaped bulges, each corresponding to a single cell. Short microvilli are distributed over the cell surface. Light microscopy shows a stratified cuboidal epithelium with an underlying strong connective tissue. Transmission electron microscopy indicates four layers. The basal cells of the epithelium are electron-translucent and have a large central nucleus and a cytoplasm with keratin tonofilaments. Plasma cells with abundant rough endoplasmic reticulum and mitochondria occur in the basal layer. Production of secretory granules begins in the more electron-dense intermediate layers and increases as the cells move toward the surface. The membranes of the cells of the deep intermediate layer form processes that project into relatively wide intercellular spaces. In the superficial intermediate layer, the cytoplasm of the cells contains numerous fine granules; these increase in number but not in size in more distal layers. The cells of the surface layer are electron-translucent with a round nucleus. Contents of their fine granules are secreted into the oral cavity. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Embryos of the viviparous teleost, “Characodon” eiseni, have unusual anal processes that function only during gestation and are lost shortly after birth. This study was undertaken to determine if the fine structure of the process epithelium supports the assumption that these cells have an absorptive function. The process epithelium is a single layer of columnar cells. At peak activity intercellular spaces become very large and isolate individual cells which simultaneously lose much of their cell mass. The cells are characterized by microvilli on their free surface, much pinocytic activity and by the formation of at least four different kinds of vesicles. There is much evidence that these vesicles fuse together. A distinctive characteristic of these cells is a system of tubules and flattened cisternae that somewhat resemble the endoplasmic reticulum yet they differ from it in several respects. It is suggested these profiles aid in fragmenting the cell at periods of peak absorptive activity, thereby increasing the cell surface. Possible mechanisms of food absorption are considered. The fine structure of these cells supports the contention that these embryonic processes serve as absorptive organs during gestation.  相似文献   

7.
The embryonic cytodifferentiation of Clitumnus midgut occurs very late when compared to that of other tissues in the embryo. It proceeds from hemolymph towards the yolk, first at the level of the muscular–connective tissue sheath, by the appearance of myofilaments in external–then internal–muscle fibers. In the gut epithelium, cytodifferentiation begins with the appearance of infoldings of the basal membranes of the cells. Then, microvilli and continuous junctions form at the apices of the cells. Microvilli appear in crypts, which seem to represent localized dilatations of intercellular spaces. At the level of these crypts, continuous junctions are formed somewhat later than are microvilli. This midgut differentiation coincides with deposition of the third embryonic (first larval) cuticle, and with a high titer of ecdysteroids.  相似文献   

8.
目的 通过对封闭群东方田鼠 (Microtusfortis)和昆明小鼠乳腺癌细胞扫描电镜特征的观察 ,旨在了解两者之间的差异。方法 将乳腺癌肿块与经产正常东方田鼠乳腺以及昆明小鼠自发性乳腺癌肿块作常规扫描电镜。结果 正常东方田鼠乳腺的腺管结构规则 ,可见分散的乳腺细胞 ,乳腺细胞表面有许多皱褶和不规则的小丘状突起 ,状如桑椹 ,无明显可见的微绒毛 ;东方田鼠乳腺癌的腺管结构不规则 ,细胞表面密布微绒毛 ,微绒毛长而不规则 ,末端成松叶状 ;昆明小鼠乳腺癌的组织中散布有大量带有微绒毛的癌细胞 ,其微绒毛特点为密而短 ,末端为圆纯状。结论 东方田鼠与昆明小鼠乳腺癌细胞表面呈现不同的微绒毛特征  相似文献   

9.
Summary Structural features of the principal, urine-secreting cells (type 1 cells) of the Malpighian tubules of Carausius are de scribedquantitatively and discussed in relation to possible mechanisms of water and solute transport. Mitochondria are arranged in two bands of about equal volume near to the basal and apical surfaces, suggesting active processes occur at both surfaces. Basal infoldings and apical microvilli which greatly amplify the cell surface are probably primarily devices to increase the passive permeability of the tissue to solutes. They do not provide functionally significant standing-osmotic-gradients. The extensive endoplasmic reticulum is locally differentiated into several components and ramifies between the infoldings and along microvilli but probably is not an intracellular conduit for the majority of urinary constituents. Vesicles and stages in their formation or liberation are observed both basally and apically although they probably do not contribute significantly to transcellular transport. At present it remains a problem to satisfactorily account for observations that the urine of Carausius can be hypotonic.This investigation formed part of a dissertation for the degree of Ph. D. in the University of Newcastle upon Tyne. It is a pleasure to thank Prof. J. Shaw for his advice and encouragement and the Science Research Council for financial support.  相似文献   

10.
Summary The fine structure of the so-called olfactory organ of Octopus vulgaris has been investigated. Electron microscopy shows the superficial layer of the epithelium to consist mainly of cells bearing microvilli. Below this, often very deeply, lie very many large cells, which bear numerous cilia. These cells open to the surface via narrow processes running between the epithelial cells. Although details of their innervation have yet to be established the large cells are assumed to be receptors and these findings are interpreted as evidence that this organ is indeed chemosensory.We would like to thank the staff of the Stazione Zoologica di Napoli for their help and excellent facilities; and the S.R.C. for financial support (a studentship to P.L.W. and grant B/SR/5287 to J.B.M.)  相似文献   

11.
In squirrel monkey (Saimiri sciureus) the position of submandibular glands in the neck, on either side of the trachea, more closely resembles that of rodents than that of other primates. The glands exhibit seromucous acini and mucous tubules with seromucous demilunes. Electron microscopy shows basal cytoplasmic folds and well-developed intercellular tissue spaces and canaliculi only in relation to seromucous cells. Greatly dilated cisternae of the granular endoplasmic reticulum and prominent Golgi membranes are characteristic of the mucous cells. The secretory granules of seromucous and mucous cells are morphologically distinct and indicate chemically different products for the two cell types. Histochemically, the seromucous cell shows the presence of acid mucosubstance as indicated by the PAS and Alcian blue techniques. Preliminary studies showed no appreciable quantity of amylase in submandibular glands. The intercalated duct cell is juxtaposed with the acinar cell or mucous tubule cell. Short luminal microvilli, prominent Golgi complexes and scant apical granules are notable features of intercalated duct cells. Four cell types compose the striated ducts, viz., granular light cells, agranular dark cells, vesiculated dark cells, and basal cells. Peripheral nerves are found in five different locations: in the connective tissue (interstitial), between adjacent myoepithelial and mucous-secreting cells, in the intercellular space between adjacent secretory cells, and between basal plications of striated ducts and between adjacent myoepithelial and intercalated duct cells.  相似文献   

12.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

13.
Bovine parotid glands exhibit outstanding structural differences when compared with those of non-ruminant mammals. The acini are tortuous, branched and lined with cells of different heights, imparting a scalloped appearance to acinar lumina. Numerous microvilli, ca. 1.5 μ in length, extend into the lumina and intercellular canaliculi. Intercellular canaliculi measure ca. 3 μ in diameter and interweave in close association with intercellular tissue spaces. Intercellular tissue spaces are separated from the extraacinar spaces across a basal lamina only, whereas junctional complexes guard canaliculi from direct continuity with tissue spaces and/or extraacinar spaces. Flattened cytoplasmic lamellae extend from adjacent acinar cells and loosely interdigitate with one another across the tissue spaces. Acinar cells contain more mitochondria and less granular endoplasmic reticulum than parotid glands of non-ruminant mammals. Two types of secretory material, in the form of inclusions which vary in size and electron density, are present in the acinar cells. Intercalated ducts connect acini with striated ducts which in turn, empty into collecting ducts located between gland lobules. In terms of frequency of “basal infoldings” and numbers of mitochondria, striated ducts of calf parotid glands are not as well developed as those of certain other salivary glands. Myoepithelial cells are most often present at junctions of acini and intercalated ducts where they may attach to both acinar and ductal epithelium. Nerve “terminals” were not observed on the epithelial side of basement membranes in relation to the secretory cells.  相似文献   

14.
In apoikogenic scorpions, growing oocytes protrude from the gonad (ovariuterus) and develop in follicles exposed to the mesosomal (i.e. hemocoelic) cavity. During subsequent stages of oogenesis (previtellogenesis and vitellogenesis), the follicles are connected to the gonad surface by prominent somatic stalks. The aim of our study was to analyze the origin, structure and functioning of somatic cells accompanying protruding oocytes. We show that these cells differentiate into two morphologically distinct subpopulations: the follicular cells and stalk cells. The follicular cells gather on the hemocoelic (i.e. facing the hemocoel) surface of the oocyte, where they constitute a cuboidal epithelium. The arrangement of the follicular cells on the oocyte surface is not uniform; moreover, the actin cytoskeleton of these cells undergoes significant modifications during oocyte growth. During initial stages of the stalk formation the stalk cells elongate and form F-actin rich cytoplasmic processes by which the stalk cells are tightly connected to each other. Additionally, the stalk cells develop microvilli directed towards the growing oocyte. Our findings indicate that the follicular cells covering hemocoelic surfaces of the oocyte and the stalk cells represent two distinct subpopulations of epithelial cells, which differ in morphology, behavior and function.  相似文献   

15.
The cellular envelope of oocytes in teleosts   总被引:4,自引:0,他引:4  
Summary Structural and functional relationships between oocytes and their envelopes were studied by means of electron microscopy in several teleost species after injection of live fish with horseradish peroxidase. The marker first appeared in the capillaries and the pericapillary spaces of the ovarian stroma. It then entered the collagen-filled spaces between the granulosa and theca cells; these spaces are in direct connection with the pericapillary spaces. The marker penetrated between the follicle cells and into the channels of the zona radiata surrounding the microvilli which traverse these channels. The marker was never found inside the microvilli or in the follicle cells; finally, it reached the surface of the oocytes and was internalized via micropinocytosis. Six stages in the course of folliculogenesis were observed, determined by (1) the formation of follicular and thecal cellular layers and a collagen-filled space between them, (2) the development of microvilli of oocytal and follicular origin, (3) the differentiation of the vitelline envelope and the pore channels, (4) pinocytotic activity of the oocytes, and (5) rapid growth of the oocyte and its envelopes during vitellogenesis.This research was supported by a grant from the National Council for Research and Development, Israel, and the GKSS GeesthachtTesperhude, Federal Republic of Germany  相似文献   

16.
The egg shells of investigated phthirapterans consist of three basic elements: an anterior operculum, a main egg shell and a posterior hydropyle. In some species these elements show further regional specializations: bristles and projections that facilitate attachment to feathers of the host, micropyles and aeropylar openings. All of the egg shell specializations are formed by distinct subpopulations of follicular cells. Staining with rhodamine-conjugated phalloidin has revealed that these subpopulations significantly differ in the distribution of microfilaments (F-actin). In this respect four morphological categories of the follicular cells have been distinguished: (1) cells devoid of processes and microvilli, with basal arrays of microfilaments, responsible for the secretion of a flat chorion; (2) cells devoid of processes and microvilli, separated by intercellular spaces, with basal arrays of microfilaments, responsible for the secretion of attachment structures; (3) cells equipped with actin-containing processes, responsible for the formation of micropyles or aeropyles, and (4) cells equipped with bundles of microvilli, responsible for the formation of hydropyles.  相似文献   

17.
Changes in the surface morphology of regenerating rabbit, rat and frog corneal endothelial cells in vivo have been investigated by scanning electron microscopy. In adult tissue these cells do not normally divide unless given a stimulus, such as injury. Surfaces of quiescent rabbit and rat cells are devoid of microvilli but display globular projections and surface pits up to 300 nm in diameter. However, regenerating endothelia are characterized by the appearance of microvilli which attain their greatest length when the cells are rounded. At this stage, cells also possess filopodia and broad processes. In cytokinesis, the microvilli have shortened and blebs and ruffles appear for the first time. In contrast to rabbits and rats, frog endothelial cells of noninjured tissue are covered by microvilli and smaller surface pits of 60-70 nm diameters. During regeneration, these cells have reduced numbers of microvilli and extensive foldings of the membrane. Neither blebs nor filopodia occur during the mitotic cycle and ruffles are not detected until cytokinesis.  相似文献   

18.
Scanning electron microscopy shows that lingual papillae occur all over the dorsal surface of the tongue of the freshwater turtle, Geoclemys reevesii. The surface of each papilla is composed of compactly distributed hemispherical bulges, each composed of a single cell. Microvilli are widely distributed over the surface of cells. Histological examination reveals that the connective tissue penetrates deep into the center of papillae and that the epithelium is stratified columnar. Under the transmission electron microscope, the cells of the basal and the deep intermediate layers of the epithelium appear rounded. A large nucleus lies in the central area of each cell. The cytoplasm contains mitochondria, endoplasmic reticulum and free ribosomes. The cell membrane form numerous processes. The shallow intermediate layer contains two types of cell. The cytoplasm of the first has numerous fine granules, in addition to mitochondria, ribosomes, and endoplasmic reticulum. The other type of cell contains highly electron-dense granules. The surface layer shows two cell types. One type consists of typical mucous cells. The other type of cell contains fine, electron-lucent granules. The latter cells lie on the free-surface side, covering the mucous cells, and have microvilli on their free surfaces.  相似文献   

19.
The ejaculatory duct of the migratory grasshopper (Melanoplus sanguinipes [Fabr.]) (Orthoptera : Acrididae) is divisible into 3 regions: upper ejaculatory duct (UED) into whose anterior end the accessory glands and vasa deferentia empty; the funnel characterized by its slit-like lumen; and the lower ejaculatory duct (LED). Anteriorly, the UED has a keyhole-shaped lumen surrounded by a thin intima and highly columnar epithelial cells whose most conspicuous feature is massive aggregations of microtubules. More posteriorly, the UED lumen differentiates into dorsal and ventral chambers, the former having a thick cuticular lining armed with spines. In the hindmost part of the UED, the ventral chamber expands to obliterate the dorsal chamber; its cuticular lining thickens, and conspicuous lateral evaginations develop. The thick cuticle includes 3 distinct layers and on its surface carries numerous spatulate processes. In this region, the epithelial cells develop numerous short microvilli beneath which are many mitochondria. As the funnel is reached, the intima becomes extremely thick, and the epithelial cells lack microvilli and most microtubules. Within the funnel, a new, very distinct form of cuticle appears, which is in “units”, each associated with an epithelial cell and having a rounded epicuticular cap. The new cuticle arises ventrally but rapidly spreads to encircle the entire lumen, at which point the LED is considered to begin. Beneath this new cuticle, the epithelial cells are columnar, have long microvilli, numerous mitochondria in the apical cytoplasm, and rough endoplasmic reticulum basally. Apically, adjacent cells are tightly apposed; however, prominent intercellular channels develop more basally. The ejaculatory duct's features are briefly discussed in terms of its role in spermatophore formation.  相似文献   

20.
Ultrastructural observations on the gills of polychaetes   总被引:1,自引:0,他引:1  
The gills of several polychaete species belonging to 9 families were studied by scanning and transmission electron microscopy. The surface epithelium is covered by a thin cuticle which is invaded by microvilli penetrating the epicuticle in certain species. Some epithelial cells bear cilia, others are mucus-producing cells. The ciliary cells may be arranged in rows and maintain a constant flow of water over the gills. The distance between external water and blood stream differs considerably according to the species investigated. InMalacoceros the gills are characterized by closed afferent and efferent subepithelial vessels, which correspond to tubular invaginations of the coelomic wall. These vessels are lined by the basement lamina of the coelothelial cells, which are of the epitheliomuscular type. The vessels are open in the gills of other polychaetes and release the blood stream into a system of spaces immediately below the epidermis (e.g. in the branchial lamellae ofPectinaria andTerebellides). In several species the blood comes into very intimate contact with the cuticle (e.g. in the gill filaments ofDendronereides), but also in these animals both are separated by a very small epidermal layer.Supported by DFG Sto 75/3-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号