首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to understand the mutual interactions between water and a biopolymer, thermodynamic analysis of sorption isotherms of water vapor by the biopolymer is necessary. These isotherms are irreversible and show sorption hysteresis. The reasons for such behavior are not established. As a continuation of previous work, general relationships for thermodynamic quantities of sorption are derived for the general case when the sorbent consists of two uniform phases. As in the case of a single sorbent phase, the Clausius–Clapeyron equation can be used to obtain differential entropies of sorption. Two special cases for the two-phase situation—equilibrium hysteresis and partial equilibrium hysteresis—are plausible models for the irreversibility seen in water–biopolymer interactions. When differential entropy of sorption is plotted as a function of amount of water sorbed per mole of biopolymer, irregularities are generally seen. It is suggested that these irregularities reflect changes in conformation and/or dynamics of the biopolymer molecule.  相似文献   

2.
The primary hydration process of native biopolymers is analyzed in a brief review of the literature, pertaining to various aspects of biopolymer–water systems. Based on this analysis, a hydration model is proposed that implies that the solution conformation of native biopolymers is stable at and above a critical degree of hydration (hp = 0.06–0.1 g H2O/g polymer). This water content corresponds to the fraction of strongly bound water, and amounts to ~20% of the primary hydration sphere. In order to test this model, detailed sorption–desorption scanning experiments were performed on a globular protein (α-chymotrypsin). The results obtained are consistent with the proposed hydration model. They show that under certain experimental conditions, sorption isotherms can be obtained that do not exhibit hysteresis. These data represent equilibrium conditions and are thus accessible to thermodynamic treatment. Valid thermodynamic functions, pertinent to the interaction of water with biopolymers in their solution state, can be obtained from these sorption experiments.  相似文献   

3.
Information about the effects of water on protein structure and function can be obtained from studies on freeze dried protein powders of varying water content. Sorption isotherms of water on proteins can be used to obtain thermodynamic quantities for water-protein interactions. Since such isotherms show hysteresis, there is doubt in regard to their interpretation.General expressions for the thermodynamic quantities of sorption are derived. If isotherms represent data at equilibrium, it is possible to calculate these thermodynamic quantities.There are two types of hysteresis, non-equilibrium hysteresis and equilibrium hysteresis. Absorption and desorption isotherms can show equilibrium hysteresis if different protein conformations, which are only slowly interconvertible, can be present. In this case valid thermodynamic quantities can be obtained. Experimental tests for equilibrium hysteresis are presented. More experiments are needed before definite conclusions can be drawn in regard to isotherms in the literature.If the protein conformation in a protein powder is similar to the protein conformation in aqueous solution, equilibrium data obtained from sorption isotherms can be used to approximate thermodynamic quantities for the interaction of water with proteins in aqueous solution. Examination of what experimental evidence is available indicates that the protein in powders prepared by desorption of water should have a conformation similar to that in solution. Further study of such samples will help to clarify the thermodynamics of water-protein interactions in aqueous solution.  相似文献   

4.
Equilibrium water sorption in stratum corneum (SC) is considered by treating it as a biocomposite with two main phases, namely, corneocytes and lipids. To validate the rule of mixtures for the individual phase sorption isotherms, a new flexible fitting model is introduced by accounting for characteristic features observed in the variations of the thermodynamic correction factors corresponding to the individual sorption isotherms. The comparison of the model fitting performance with that of the five-parameter Park's model shows a remarkably good ability to fit experimental data for different types of sorption isotherms. The effect of the lipids content on the variance of the composite sorption isotherm of stratum corneum is highlighted. The sensitivity analysis reveals that for the typical water content 20–30 wt%, which corresponds to the SC in a stable condition, the sensitivity of the composite sorption isotherm to the variation of the lipids content on dry basis is predominantly positive and sufficiently small. The good agreement observed between the experimental sorption isotherm for SC and the composite isotherm, which is based on the rule of mixtures for the individual phase sorption isotherms, yields a plausible conclusion (hypothesis) that the corneocytes–lipids mechanical interaction during unconstrained swelling of the SC membrane in the in vitro laboratory experiment is negligible.  相似文献   

5.
Water sorption isotherms at 27°C have been measured for lysozyme and chymotrypsin in suspensions of toluene, di(n-butyl) ether, n-propanol, and a solution of 1M n-propanol in benzene. Sorption isotherms for the different suspensions are compared by converting solvent water content to the thermodynamic activity of water in each solvent. The sorption behavior is also compared to that for the two proteins hydrated from the vapor phase. At low water activities, all sorption isotherms are similar when compared on the basis of water activity. However, at higher activities, water sorption by the proteins in the organic suspensions is suppressed relative to the sorption of water vapor. The greatest suppression is observed for n -propanol, which suggests that the suppression may be due to a competition for water-binding sites on the protein by the organic solvent. Sorption isotherms at low water activities have also been predicted using a thermodynamic model in which it is assumed that water binds selectively to the ionizable residues on the surface of the protein. A comparison of predicted and measured sorption isotherms shows that the model can provide reasonable estimates of water sorption in nonpolar or moderately polar organic solvent suspensions at low levels of hydration. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In this work, the effect of water uptake on the structural reorganization and elastic properties of three types of biopolymer films was studied. The water-biopolymer interaction for hydroxypropyl cellulose (HPC), gelatin, and cassava starch films prepared from aqueous solutions was studied and compared using Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction, dynamic vapor sorption (DVS), and dynamic mechanical thermal analysis with humidity generator and controller (DMTA) techniques. The FTIR spectral variations due to the water sorption were generalized into two-dimensional (2D) correlation graphs for each biopolymer, and the effect of water on the molecular conformation was compared. The water sorption isotherms were fitted with Guggenheim-Anderson-De Boer (GAB) and D'Arcy and Watt models. The water content in the mono- and multilayers predicted by both models for each biopolymer was discussed and compared. The correlation of the fitted data obtained from the sorption isotherms to the DMTA data allowed us to conclude that the elastic properties of the HPC films depended on the total water content in contrast to the elastic properties of the gelatin and cassava starch films, which decrease only with the appearance of multilayer water.  相似文献   

7.
The thermodynamic functions of biopolymer hydration were investigated by multitemperature vapor pressure studies. Desorption measurements were performed that allowed determination of reversible isotherms in the hydration range of 0.1 to 0.3–0.5 g H2O/g dry polymer. These isotherms are accessible to thermodynamic interpretation and are relevant to the interaction of water with biopolymers in their solution conformation. The results obtained on a series of different biopolymers (lysozyme, α-chymotrypsin, apo-lactoferrin, and desoxyribonucleic acid), show the following common features of interest: (1) The differential excess enthalpies (ΔHe ) and entropies (ΔSe ) are negative, and exhibit pronounced anomalies in a well-defined low-humidity range (approx. 0.1 g H2O/g dry polymer). These initial extrema are interpretable by structural changes, induced in the native biopolymer structures by water removal below a critical degree of hydration. (2) The ΔHe and ΔSe terms exhibit statistically significant linear enthalpy–entropy compensation effects in all biopolymer–water systems investigated. The compensation temperatures \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \beta = \overline {\Delta H} ^e /\overline {\Delta S} ^e $\end{document} are approximately identical for all biopolymers, ranging from 360 to 500 K. The compensation effects are attributable to phase transitions of water molecules between the bulk liquid and the inner-sphere hydration shell of native biopolymers. (3) The negative excess free energies (ΔGe ) decrease monotonically with increasing water content and are close to zero at 0.3 to 0.5 g H2O/g polymer. This result indicates that only transitions between the bulk liquid and the inner-sphere hydration shell are associated with significant net free energy effects. The outer-sphere hydration water is thermodynamically comparable to bulk water. The importance of the proportionality factor \documentclass{article}\pagestyle{empty}\begin{document}$ \hat \beta $\end{document} in the control of the free energy term is discussed.  相似文献   

8.
A model for the hydration behavior of human stratum corneum has been developed from measurements on in vitro samples isolated in a manner which minimized tissue treatment and trauma. Water sorption/desorption rate measurements as a function of water activity, temperature, and tissue integrity are reported. These data, together with thermodynamic data (infrared and nmr results reported earlier) are consistent with a model in which rapidly sorbed/desorbed water (ca. 0.5 mg water/mg stratum corneum) is associated with (“bound” by) the tissue, while slowly sorbed/desorbed “free” water (up to 12 mg water/mg stratum corneum) is kinetically restricted and probably intracellular in location. Both equilibrium water binding and desorption kinetic data suggest structural changes of this cellular water barrier upon hydration. Evidence for hysteresis in water sorption isotherms (reported by others) could not be reproduced.  相似文献   

9.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   

10.
The objectives of this paper were to determine the efficiency of physicochemically modified soils with a surfactant in the sorption of pesticides, the stability against washing of the pesticides sorbed, and the effective sorption capacity of surfactant adsorbed by soils as a function of pesticide hydrophobicity and soil characteristics. Five soils of different characteristics and five pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl) with different Kow values were selected and octadecyltrimethylammonium bromide (ODTMA) was chosen as model of cationic surfactants. Sorption-desorption isotherms were obtained and constants Kf and Kfd for natural soils (from Freundlich equation) and K and Kd for ODTMA-soils (from linear equation) were determined. Sorption on ODTMA-soils was higher than on natural soils. K increased 27–165 times for penconazole, 22–77 times for linuron, 7–14 times for alachlor, 9–23 times for atrazine, and 21–333 times for metalaxyl in relation to Kf. Sorption coefficients normalized to 100% of total organic matter (TOM) from organo soils KOM (K 100/%TOM), were always higher than those from natural soils KfOM (Kf 100/%OM), indicating that the organic matter (OM) derived from the ODTMA (OMODTMA) had a greater sorption capacity than the OM of the natural soil. KOM values were also higher than the Kow (octanol/water distribution coefficient) value for each pesticide. The similarity of the high KOM values for the sorption of each pesticide by the five soils and the linearity of isotherms point to a partitioning of the pesticides between surfactant and water. The use in this work of different soils and various pesticides, unusual in this type of investigation, allowed us to obtain equations to know the sorbed amount of a given pesticide by the surfactant-modified soils as a function of the OM content derived from the cation and the Kow of the pesticide. The results obtained are of interest when it becomes necessary to increase the sorption capacity of soils with low OM contents with a view to delaying pesticide mobility in soils from pollution point sources (high concentration in small area), and preventing the pollution of waters.  相似文献   

11.
Lumry R 《Biophysical chemistry》2003,105(2-3):609-620
Enthalpy, entropy and volume data obtained for processes studied in aqueous solvents generally have been assumed to apply to the solute process without consideration of the coupling between the process and the two-state equilibrium of water. Walrafen's confirmation of the latter in 1983 shows that long-debated model to be correct so the enthalpy and entropy contributions to a free-energy change to give unambiguous information must be corrected for the water contribution. The situation is further complicated by differential chemical interaction of amphiphilic solutes with the two water species since experimental complications make correction difficult or impossible. A more general source of error in isothermal experiments is the linkage to the thermal-equilibrium device. That thermal problem discovered only in 1967 is not yet treated in textbooks although it is always a complication in isothermal processes and responsible for a hierarchy of thermodynamic quantities with different levels of reliability. Major consequences for several familiar thermodynamic and extra-thermodynamic methods are examined in terms of relative reliability. In most cases the thermal corrections are restricted by changes in phase state on cooling.  相似文献   

12.
Homotropic cooperative binding was observed at vapor sorption of organic solvents (acetonitrile, propionitrile, ethanol, 1-propanol, 2-propanol, nitroethane) by dried solid trypsin from porcine pancreas (0.05 g H2O/g protein). The vapor sorption isotherms were obtained by the static method of gas chromatographic headspace analysis at 298 K for 'vapor solvent+solid trypsin' systems in the absence of the liquid phase. All isotherms have a sigmoidal shape with significant sorbate uptake only above the threshold of sorbate thermodynamic activity. On the sorption isotherms of non-hydroxylic sorbates the saturation of trypsin by organic solvent was observed above the sorbate threshold activity. The formation of inclusion compounds with phase transition between solvent-free and solvent-saturated trypsin is supposed. Approximation of obtained isotherms by the Hill equation gives the inclusion stoichiometry S, inclusion free energy, and the Hill constant N of clathrates. The inclusion stoichiometry S depends significantly on the size and shape of sorbate molecules and changes from S=31 mol of sorbate per mol of trypsin for ethanol to S=6 for nitroethane. The inclusion free energies determined for the standard states of pure liquid sorbate and infinitely dilute solution in toluene are in the range from -0.5 to -1.2 kJ/mol and from -3.1 to -8.1 kJ/mol, respectively, per 1 mol of sorbate. The Hill constants are relatively high: from N=5.6 for 1-propanol to N approximately equal to 10(3) for nitroethane. The implication of the obtained results for the interpretation of solvent effects on the enzyme activity and stability in low-water medium is discussed.  相似文献   

13.
Water sorption isotherms of superabsorbent polymers were measured, and their affinity for water was evaluated by solution thermodynamics. The results provide basic data for the functional packaging of food to control the water content of food during its transportation or storage. Water activity above 0.9 was measured by adding a specific amount of water to the samples, while that below 0.9 was measured with apparatus for evaluating water sorption isotherms. Thus, water sorption isotherms for superabsorbent polymers were obtained up to a water activity of approximately 0.98. The amount of water sorbed by the superabsorbent polymers was influenced by the type of functional groups in the polymers, and not by the degree of cross-linking in the polymers. The integral Gibbs free energy, which is the most suitable parameter for evaluating the affinity of a material for water, was evaluated from the water sorption isotherms by using solution thermodynamics.  相似文献   

14.
Polymer composite materials are usually reinforced by synthetic matter such as carbon or glass fibres. However, owing to their good mechanical properties and low density, natural fibres are now increasingly being considered as reinforcement. With the aim of a new natural fibre based composite, various chemical treatments have been performed on Agave (Americana L.) fibres in order to improve their compatibility with the polymer matrix and to reduce their affinity for water. The effect of these treatments on the fibre water sorption power has been investigated by means of a micro-balance. Equilibrium water sorption isotherms have been deduced from weight variations of the fibres under water vapor pressure increments. Several specific physico-chemical models have been tested to describe the water sorption isotherms. The Park’s model was found to describe the experimental results accurately and over a wide activity range. The sorption kinetics was also exploited in order to evaluate the diffusivity of water in the fibres. The variation of the water diffusion coefficient with water concentration is in agreement with the triple sorption mode described by the Park’s model. These results show a global increase of moisture resistance of the fibres after chemical treatment. This effect is interpreted in terms of chemical and structural modifications of the cell-wall structure.  相似文献   

15.
Moisture sorption isotherms of figs with and without glucose syrup (at 20% and 40%, w/w) were determined at 5 °C, 25 °C, and 40 °C. A static gravimetric method was used under 0.11–0.84 water activity ranges for the determination of sorption isotherms that were found to be typical type ΙΙΙ for control sample. The inclusion of glucose syrup had significant effects on the sorption isotherms, and the moisture content of samples at each a w decreased with increasing temperature. The experimental data were fitted well with two-parameter Brunauer–Emmet–Teller, three-parameter Guggenheim–Anderson–de Boer, and four-parameter Peleg models that all had R 2 of greater than 0.99. The net isosteric heats of sorption were estimated using the Clausius–Clapeyron equation from the equilibrium data at different temperatures. It was found that the addition of glucose syrup significantly increased the amount of monolayer water and the isosteric heat of sorption. Both water activity and isosteric heat of sorption increased with glucose syrup level and the shape and status of sorption isotherms tend to change toward the typical sigmoid shape of most food systems.  相似文献   

16.
《Process Biochemistry》2004,39(6):761-765
The kinetics of cadmium sorption on to tree fern has been investigated based on the assumption of a pseudo-second order rate law. The batch sorption model has been applied to predict the rate constant of sorption and the equilibrium capacity with the effect of initial cadmium concentration. The experimental results have been analysed by pseudo-Langmuir, pseudo-Freundlich and pseudo-Redlich–Peterson isotherms based on pseudo-second order kinetic expression constant. Both pseudo-Langmuir and pseudo-Redlich–Peterson isotherms were found to represent the measured sorption data well. According to the evaluation using the pseudo-Langmuir equation, the monolayer sorption capacity was obtained to he 16.3 mg/g. In addition, χ2 analysis was also used to determine the most suitable model. Pseudo-Langmuir and pseudo-Redlich–Peterson were also the best models for the experiment data from χ2 analysis.  相似文献   

17.
Ho YS  Chiu WT  Wang CC 《Bioresource technology》2005,96(11):1285-1291
The sorption of three basic dyes, named basic violet 10, basic violet 1, and basic green 4, from aqueous solutions onto sugarcane dust was studied. The results revealed the potential of sugarcane dust, a waste material, to be a low-cost sorbent. Equilibrium isotherms were analyzed using the Langmuir, the Freundlich, and the three-parameter Redlich-Peterson isotherms. In order to determine the best-fit isotherm for each system, two error analysis methods were used to evaluate the data: the linear coefficient of determination and the Chi-square statistic test for determination of a non-linear model. Results indicated that the Chi-square test provided a better determination for the three sets of experimental data.  相似文献   

18.
Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC), mesoporous carbon (MPC), bamboo biochar (BBC) and oak wood biochar (OBC)) were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the ππ electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively), compared to MPC (73.00 mg/g) and AC, indicating an ineffective potential for phenol removal from water.  相似文献   

19.
The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5–3.5. At an initial Se concentration of 100 mg/L (1.3 m M), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively.  相似文献   

20.
The state of adsorbed water in a dextran gel has been investigated by near-infrared and gravimetric-adsorption techniques. Water-vapor adsorption (desorption) isotherms at three temperatures are reported. The calculated sorption heats are found to be markedly temperature-dependent as well as dependent on the coverage. The near-infrared spectrum (4650–9000 cm-1) is reported, together with tentative assignments. The H2O combination (ν + δ) band at 5184 cm-1 has been examined as a function of relative humidity. The line-shapes of this band have been analyzed by a recently established, Fourier-inversion technique, and information on the microdynamics of the adsorbed water molecules has been resolved on the picosecond time-scale. At low and intermediate degrees of hydration, reorientational jumps take place with periods from four to six times longer than those for free water. The onset of saturation is then accompanied by the sudden removal of the reorientational jumps. A comparison of microdynamical and thermodynamic data indicates the hydration mechanism to be highly cooperative at all relative humidities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号