首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabczak H  Sobierajska K  Fabczak S 《Protist》2004,155(2):181-192
Examination of ciliate Blepharisma japonicum whole cell lysates with an antibody against phosphoserine and in vivo labeling of cells with radioactive phosphate revealed that the photophobic response in the ciliate is accompanied by a rapid dephosphorylation of a 28 kDa protein and an enhanced phosphorylation of a 46 kDa protein. Analysis with antibodies raised against rat phosducin or human phosducin-like proteins, identified one major protein of a molecular weight of 28 kDa, and two protein bands of 40 kDa and 93 kDa. While the identified ciliate phosducin is phosphorylated in a light-dependent manner, both phosducin-like proteins exhibit no detectable dependence of phosphorylation upon illumination. An immunoprecipitation assay also showed that the ciliate phosducin is indeed phosphorylated on a serine residue and exists in a phosphorylated form in darkness and that its dephosphorylation occurs in light. Immunocytochemical experiments showed that protozoan phosducin and phosducin-like proteins are localized almost uniformly within the cytoplasm of cells adapted to darkness. Cell exposure to light caused a pronounced displacement of the cell phosducin to the vicinity of the plasma membrane; however, no translocation of phosducin-like proteins was observed upon cell illumination. The obtained results are the first demonstration of the presence and morphological localization of a possible phosducin and phosducin-like proteins in ciliate protists. Phosducin and phosducin-like proteins were found to bind and sequester the betagamma-subunits of G-proteins with implications for regulation of G-protein-mediated signaling pathways in various eukaryotic cells. The findings presented in this study suggest that the identified phosphoproteins in photosensitive Blepharisma japonicum may also participate in the regulation of the efficiency of sensory transduction, resulting in the motile photophobic response in this cell.  相似文献   

2.
Sugiura M  Tanaka Y  Suzaki T  Harumoto T 《Protist》2012,163(2):204-216
In contrast to most ciliates, meiosis and successive nuclear changes during conjugation occur only in heterotypic pairs in Blepharisma. It has been suggested that homotypic pairs are ready for conjugation, but lack a trigger to initiate the nuclear changes, and the conjugation process is arrested before the onset of meiosis. To explore the possible nature of the trigger, we previously identified the genes BjCdk1 (homologous to cdk1/cdc2), Bj4HPPD (4-hydroxy-phenylpyruvate dioxygenase) and BjCks (cyclin dependent kinase regulatory subunit) whose expression is up-regulated in gamone1-treated type II cells. In this study, we investigated the molecular structures of these three genes, and compared their expression patterns in homotypic and heterotypic pairs, finding remarkable differences. BjCdk1, Bj4HPPD and BjCks were expressed specifically in gamone1-treated type II cells, but not in gamone2-treated type I cells. In heterotypic pairs, the expression of these genes stayed at the same level or gradually decreased throughout the entire process of conjugation, but it rapidly decreased and ceased after 10hours in homotypic pairs. These results indicate that some genes are expressed in a mating-type specific manner. Alternative gene expression in mating type I and type II cells and merging of individual factors in a heterotypic pair may induce nuclear changes including meiosis.  相似文献   

3.
司鑫鑫  孙玉洁 《遗传》2014,36(5):411-419
肿瘤耐药是导致肿瘤化疗失败的主要原因, 其产生机制复杂多样, 是多种因素共同作用的结果。近年来, 表观遗传改变在肿瘤耐药中的作用日益受到关注。DNA甲基化是一种重要的表观遗传修饰, 在调节基因表达和维持基因组稳定性中扮演着重要角色。原发性或获得性耐药的肿瘤细胞大多伴随DNA异常甲基化, 越来越多的证据显示, DNA甲基化异常是肿瘤细胞耐药表型产生的重要机制。文章就DNA甲基化异常与肿瘤细胞耐药的关系及相关作用机制进行了综述。  相似文献   

4.
5.
王萍  房静远 《生命科学》2009,(2):291-294
线粒体DNA(mitochondrial DNA,mtDNA)遗传信息量虽小,却控制着线粒体一些最基本的性质,对细胞及其功能有着重要影响。mtDNA的损伤与衰老、肿瘤等疾病的发生有关。DNA甲基化是调节基因表达的重要方式之一。mtDNA基因的表达受核DNA(nuclear DNA,nDNA)的调控,mtDNA和nDNA协同作用参与机体代谢调节和发病。本文就近年来mtDNA与DNA甲基化的关系作一综述。  相似文献   

6.
7.
8.
9.
Mating type differentiation in Tetrahymena thermophila is known to regularly involve stable hereditary alterations at a single chromosomal locus in the somatic (macro)nucleus. This differentiation is directionally affected by the temperature at which new macronuclei develop after fertilization. We now report large and predictable effects of delayed refeeding of conjugating pairs upon mating type differentiation, particularly among mat-2 homozygotes. The mating types whose frequency is affected the most are IV, VI, and VII, a set different from that most affected by temperature. We interpret our observations to reveal the existence of a second system which can participate in mating type differentiation, with different specificity from the system influenced by temperature under conditions of early refeeding of conjugating pairs. These observations enrich the phenomenology surrounding mating type differentiation in T thermophila and provide additional, easily controllable experimental conditions for the manipulation of mating type frequencies.  相似文献   

10.
童童  王连荣 《微生物学报》2017,57(11):1688-1697
为了适应复杂多变的生存环境,微生物通常需要在保证基因组序列不变的前提下不断调整胞内代谢网络。表观调控可以在不改变DNA序列的情况下对基因表达进行调控,因此成为细菌中重要的调控方式。作为一种DNA修饰,DNA甲基化修饰是生物体中最常见的表观调控工具。在本文中我们全面、深入解析了两种孤儿甲基转移酶:DNA腺嘌呤甲基转移酶(DNA adenine methyltransferase,Dam)和细胞周期调控甲基转移酶(Cell cycle-regulated methyltransferase,Ccr M)在原核生物中的表观调控功能。我们主要探讨了DNA甲基化参与的细胞生理过程包括DNA复制起始、DNA错配修复、基因表达调控、致病性和相变异等方面。同时,我们结合三维基因组研究技术基因组结构捕获(Chromosome conformation capture,3C)技术和新型DNA磷硫酰化修饰讨论了该领域的发展前景。  相似文献   

11.
12.
13.
Tissue-specific gene expression can be controlled by epigenetic modifications such as DNA methylation. SHANK3, together with its homologues SHANK1 and SHANK2, has a central functional and structural role in excitatory synapses and is involved in the human chromosome 22q13 deletion syndrome. In this report, we show by DNA methylation analysis in lymphocytes, brain cortex, cerebellum and heart that the three SHANK genes possess several methylated CpG boxes, but only SHANK3 CpG islands are highly methylated in tissues where protein expression is low or absent and unmethylated where expression is present. SHANK3 protein expression is significantly reduced in hippocampal neurons after treatment with methionine, while HeLa cells become able to express SHANK3 after treatment with 5-Aza-2'-deoxycytidine. Altogether, these data suggest the existence of a specific epigenetic control mechanism regulating SHANK3, but not SHANK1 and SHANK2, expression.  相似文献   

14.
15.
16.
17.
18.
19.
The ornithine decarboxylase (odc) gene is an early response gene, whose increased expression and relaxed chromatin structure is closely coupled to neoplastic growth. In various tumour cells, the odc gene displays hypomethylation at the sequences CCGG. Hypomethylation of genes is believed to correlate with chromatin decondensation and gene expression. Since a given pattern of DNA methylation may not be preserved in neoplastic cells, we studied the methylation status of odc gene at the CCGG sequences in c-Ha-rasVal 12 oncogene-transformed NIH-3T3 fibroblasts during the growth cycle and relative to their normal counterparts. We found that the methylation state of the odc gene and its promoter and mid-coding and 3' regions remain unaltered during the cell cycle. We also found that in ras oncogene-transformed cells, which display a more decondensed nucleosomal organization of chromatin than the normal cells, the CCGG sequences in bulk DNA and at the odc gene were methylated to the same extent as in the nontransformed cells. These data suggest that DNA hypomethylation at the CCGG sequences is not a prerequisite for chromatin decondensation and cell transformation by the c-Ha-rasVal 12 oncogene.  相似文献   

20.
R. Holliday  T. Ho 《Mutation research》1998,400(1-2):361-368
It is known that transformed mammalian cells can spontaneously inactivate genes at low frequency by the de novo methylation of promoter sequences. It is usually assumed that this is due to DNA methyl transferase activity, but an alternative possibiity is that 5-methyldCTP is present in these cells and can be directly incorporated into DNA. The ongoing repair of DNA containing 5-methylcytosine will produce 5-methyldeoxycytidine monophosphate (5-methyldCMP), so the question arises whether this can be phosphorylated to 5-methyldCTP. We have tested this using three strains of CHO cells with different levels of 5-methyldCMP deaminase activity. That with the lowest enzyme activity, designated HAM, has previously been shown to incorporate tritium labelled 5-methyldeoxycytidine into 5-methylcytosine in DNA, with a greater amount of label in thymine. This strain is phenotypically unstable producing cells resistant to bromodeoxyuridine (BrdU) and 6-thioguanine (6-TG) at high frequency. In contrast, the strain with the highest 5-methyldCMP deaminease, designated HAM+, is extremely stable, and the starting strain K1 HAMs1 is intermediate between the HAM and HAM+ phenotypes. We have also shown that human diploid fibroblast strain MRC-5 has a phenotype like HAM+, whereas its SV40 transformed derivative, MRC-5V2 resembles HAM in having low 5-methyl dCMP deaminase activity, and is phenotypically unstable with regard to 6-TG resistance. It seems that 5-methyldCMP deaminase can be down-regulated in transformed cells, and this can promote de novo methylation by incorporation of 5-methyldCTP derived from 5-methyldCMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号