首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fabczak H  Sobierajska K  Fabczak S 《Protist》2004,155(2):181-192
Examination of ciliate Blepharisma japonicum whole cell lysates with an antibody against phosphoserine and in vivo labeling of cells with radioactive phosphate revealed that the photophobic response in the ciliate is accompanied by a rapid dephosphorylation of a 28 kDa protein and an enhanced phosphorylation of a 46 kDa protein. Analysis with antibodies raised against rat phosducin or human phosducin-like proteins, identified one major protein of a molecular weight of 28 kDa, and two protein bands of 40 kDa and 93 kDa. While the identified ciliate phosducin is phosphorylated in a light-dependent manner, both phosducin-like proteins exhibit no detectable dependence of phosphorylation upon illumination. An immunoprecipitation assay also showed that the ciliate phosducin is indeed phosphorylated on a serine residue and exists in a phosphorylated form in darkness and that its dephosphorylation occurs in light. Immunocytochemical experiments showed that protozoan phosducin and phosducin-like proteins are localized almost uniformly within the cytoplasm of cells adapted to darkness. Cell exposure to light caused a pronounced displacement of the cell phosducin to the vicinity of the plasma membrane; however, no translocation of phosducin-like proteins was observed upon cell illumination. The obtained results are the first demonstration of the presence and morphological localization of a possible phosducin and phosducin-like proteins in ciliate protists. Phosducin and phosducin-like proteins were found to bind and sequester the betagamma-subunits of G-proteins with implications for regulation of G-protein-mediated signaling pathways in various eukaryotic cells. The findings presented in this study suggest that the identified phosphoproteins in photosensitive Blepharisma japonicum may also participate in the regulation of the efficiency of sensory transduction, resulting in the motile photophobic response in this cell.  相似文献   

2.
Sugiura M  Tanaka Y  Suzaki T  Harumoto T 《Protist》2012,163(2):204-216
In contrast to most ciliates, meiosis and successive nuclear changes during conjugation occur only in heterotypic pairs in Blepharisma. It has been suggested that homotypic pairs are ready for conjugation, but lack a trigger to initiate the nuclear changes, and the conjugation process is arrested before the onset of meiosis. To explore the possible nature of the trigger, we previously identified the genes BjCdk1 (homologous to cdk1/cdc2), Bj4HPPD (4-hydroxy-phenylpyruvate dioxygenase) and BjCks (cyclin dependent kinase regulatory subunit) whose expression is up-regulated in gamone1-treated type II cells. In this study, we investigated the molecular structures of these three genes, and compared their expression patterns in homotypic and heterotypic pairs, finding remarkable differences. BjCdk1, Bj4HPPD and BjCks were expressed specifically in gamone1-treated type II cells, but not in gamone2-treated type I cells. In heterotypic pairs, the expression of these genes stayed at the same level or gradually decreased throughout the entire process of conjugation, but it rapidly decreased and ceased after 10hours in homotypic pairs. These results indicate that some genes are expressed in a mating-type specific manner. Alternative gene expression in mating type I and type II cells and merging of individual factors in a heterotypic pair may induce nuclear changes including meiosis.  相似文献   

3.
4.
王萍  房静远 《生命科学》2009,(2):291-294
线粒体DNA(mitochondrial DNA,mtDNA)遗传信息量虽小,却控制着线粒体一些最基本的性质,对细胞及其功能有着重要影响。mtDNA的损伤与衰老、肿瘤等疾病的发生有关。DNA甲基化是调节基因表达的重要方式之一。mtDNA基因的表达受核DNA(nuclear DNA,nDNA)的调控,mtDNA和nDNA协同作用参与机体代谢调节和发病。本文就近年来mtDNA与DNA甲基化的关系作一综述。  相似文献   

5.
Mating type differentiation in Tetrahymena thermophila is known to regularly involve stable hereditary alterations at a single chromosomal locus in the somatic (macro)nucleus. This differentiation is directionally affected by the temperature at which new macronuclei develop after fertilization. We now report large and predictable effects of delayed refeeding of conjugating pairs upon mating type differentiation, particularly among mat-2 homozygotes. The mating types whose frequency is affected the most are IV, VI, and VII, a set different from that most affected by temperature. We interpret our observations to reveal the existence of a second system which can participate in mating type differentiation, with different specificity from the system influenced by temperature under conditions of early refeeding of conjugating pairs. These observations enrich the phenomenology surrounding mating type differentiation in T thermophila and provide additional, easily controllable experimental conditions for the manipulation of mating type frequencies.  相似文献   

6.
7.
8.
Tissue-specific gene expression can be controlled by epigenetic modifications such as DNA methylation. SHANK3, together with its homologues SHANK1 and SHANK2, has a central functional and structural role in excitatory synapses and is involved in the human chromosome 22q13 deletion syndrome. In this report, we show by DNA methylation analysis in lymphocytes, brain cortex, cerebellum and heart that the three SHANK genes possess several methylated CpG boxes, but only SHANK3 CpG islands are highly methylated in tissues where protein expression is low or absent and unmethylated where expression is present. SHANK3 protein expression is significantly reduced in hippocampal neurons after treatment with methionine, while HeLa cells become able to express SHANK3 after treatment with 5-Aza-2'-deoxycytidine. Altogether, these data suggest the existence of a specific epigenetic control mechanism regulating SHANK3, but not SHANK1 and SHANK2, expression.  相似文献   

9.
R. Holliday  T. Ho 《Mutation research》1998,400(1-2):361-368
It is known that transformed mammalian cells can spontaneously inactivate genes at low frequency by the de novo methylation of promoter sequences. It is usually assumed that this is due to DNA methyl transferase activity, but an alternative possibiity is that 5-methyldCTP is present in these cells and can be directly incorporated into DNA. The ongoing repair of DNA containing 5-methylcytosine will produce 5-methyldeoxycytidine monophosphate (5-methyldCMP), so the question arises whether this can be phosphorylated to 5-methyldCTP. We have tested this using three strains of CHO cells with different levels of 5-methyldCMP deaminase activity. That with the lowest enzyme activity, designated HAM, has previously been shown to incorporate tritium labelled 5-methyldeoxycytidine into 5-methylcytosine in DNA, with a greater amount of label in thymine. This strain is phenotypically unstable producing cells resistant to bromodeoxyuridine (BrdU) and 6-thioguanine (6-TG) at high frequency. In contrast, the strain with the highest 5-methyldCMP deaminease, designated HAM+, is extremely stable, and the starting strain K1 HAMs1 is intermediate between the HAM and HAM+ phenotypes. We have also shown that human diploid fibroblast strain MRC-5 has a phenotype like HAM+, whereas its SV40 transformed derivative, MRC-5V2 resembles HAM in having low 5-methyl dCMP deaminase activity, and is phenotypically unstable with regard to 6-TG resistance. It seems that 5-methyldCMP deaminase can be down-regulated in transformed cells, and this can promote de novo methylation by incorporation of 5-methyldCTP derived from 5-methyldCMP.  相似文献   

10.
11.
12.
The ornithine decarboxylase (odc) gene is an early response gene, whose increased expression and relaxed chromatin structure is closely coupled to neoplastic growth. In various tumour cells, the odc gene displays hypomethylation at the sequences CCGG. Hypomethylation of genes is believed to correlate with chromatin decondensation and gene expression. Since a given pattern of DNA methylation may not be preserved in neoplastic cells, we studied the methylation status of odc gene at the CCGG sequences in c-Ha-rasVal 12 oncogene-transformed NIH-3T3 fibroblasts during the growth cycle and relative to their normal counterparts. We found that the methylation state of the odc gene and its promoter and mid-coding and 3' regions remain unaltered during the cell cycle. We also found that in ras oncogene-transformed cells, which display a more decondensed nucleosomal organization of chromatin than the normal cells, the CCGG sequences in bulk DNA and at the odc gene were methylated to the same extent as in the nontransformed cells. These data suggest that DNA hypomethylation at the CCGG sequences is not a prerequisite for chromatin decondensation and cell transformation by the c-Ha-rasVal 12 oncogene.  相似文献   

13.
DNA methylation is a chemical modification of DNA involved in the regulation of gene expression by controlling the access to the DNA sequence. It is the most stable epigenetic mark and is widely studied for its role in major biological processes. Aberrant DNA methylation is observed in various pathologies, such as cancer. Therefore, there is a great interest in analyzing subtle changes in DNA methylation induced by biological processes or upon drug treatments. Here, we developed an improved methodology based on flow cytometry to measure variations of DNA methylation level in melanoma and leukemia cells. The accuracy of DNA methylation quantification was validated with LC-ESI mass spectrometry analysis. The new protocol was used to detect small variations of cytosine methylation occurring in individual cells during their cell cycle and those induced by the demethylating agent 5-aza-2''-deoxycytidine (5AzadC). Kinetic experiments confirmed that inheritance of DNA methylation occurs efficiently in S phase and revealed a short delay between DNA replication and completion of cytosine methylation. In addition, this study suggests that the uncoupling of 5AzadC effects on DNA demethylation and cell proliferation might be related to the duration of the DNA replication phase.  相似文献   

14.
《Epigenetics》2013,8(6):873-883
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.  相似文献   

15.
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.  相似文献   

16.
17.
18.
We have analyzed the nucleotide sequence changes responsible for mutations from lacIs to lacI- induced in ultraviolet light-irradiated, excision-deficient cells. Irradiated cells were either used as donors in the conjugational transfer of an F' lacIs plasmid to SOS-induced, excision-deficient recipients or allowed to continue vegetative growth. Although the types and proportions of premutagenic lesions are likely to have been very similar in these two circumstances, analysis of the sequence data shows that different spectra of mutations were induced. In vegetative cells there were about equal numbers of transitions and transversions, but transitions outnumbered transversions by about three to one in exconjugants. About 90% of the single nucleotide substitutions could be assigned to a bipyrimidine target sequence in both sets of data, but they differed with respect to the location of the substitution: more or less equal numbers were found at the 3' and 5' sites of the probable bipyrimidine target in vegetative cells, but in exconjugants over 80% were at the 3' site. It is also possible that mutations were targeted more commonly at T-C sequences in exconjugants than in vegetative cells, but the evidence for this is less secure. We conclude that these results reflect some dissimilarity between vegetative cells and exconjugants in the way damaged DNA is replicated or lesions tolerated, but the particular features of these processes responsible for the different mutational spectra have not yet been identified.  相似文献   

19.
20.
姚晨  李红东  郭政 《生物信息学》2011,9(2):102-105
DNA甲基化是影响基因表达的重要因素之一。DNA甲基化芯片已广泛应用于寻找癌症的标志物,但是目前还没有研究对这些标志物的重复性进行评价。另外,DNA甲基化对基因表达的影响也存在争议。在本文中,通过分析肾细胞癌的两套甲基化数据,发现它们的差异甲基化基因的方向高度的一致,证明通过甲基化芯片获得的甲基化标记有很高的重复性。进一步分析甲基化基因对应的表达改变,发现肾细胞癌中高甲基化的基因显著影响表达下调,而低甲基化的基因与表达改变无显著关系。最后,通过功能分析,找到了三个同时发生甲基化和表达改变的通路。针对这些通路研究DNA甲基化抑制剂,可能有助于肾细胞癌的靶向治疗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号