首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

2.
3.
The biological mechanisms involved in initiating, coordinating, and ultimately terminating cell-cell adhesion in the stratified epithelium are not well understood at present. This study was designed to elucidate the roles of the muscarinic M3, the nicotinic alpha3, and the mixed muscarinic-nicotinic alpha9 acetylcholine receptors in physiologic control of keratinocyte adhesion. Both muscarinic and nicotinic antagonists caused keratinocyte detachment and reversibly increased the permeability of keratinocyte monolayers, indicative of the involvement of both muscarinic and nicotinic pathways in the cholinergic control of keratinocyte adhesion. Since phosphorylation of adhesion proteins plays an important role in rapid assembly and disassembly of intercellular junctions, we measured muscarinic and nicotinic effects on phosphorylation of keratinocyte adhesion molecules. The phosphorylation levels of E-cadherin, beta-catenin, and gamma-catenin increased following pharmacological blockage of muscarinic receptors. Long-term blocking of alpha3, alpha9, and M3 receptor signaling pathways with antisense oligonucleotides resulted in cell-cell detachment and changes in the expression levels of E-cadherin, beta-catenin, and gamma-catenin in cultured human keratinocytes. Simultaneous inhibition of several receptor subtypes with a mixture of antisense oligonucleotides produced intensified abnormalities with cell adhesion. Moreover, altered cell-cell adhesion was found in the stratified epithelium of alpha3, alpha9, and M3 receptor knockout mice. Keratinocytes from these mice exhibited abnormal expression of adhesion molecules at both the protein and the mRNA levels. Thus, our data indicate that the alpha3, alpha9, and M3 acetylcholine receptors play key roles in regulating in a synergistic mode keratinocyte adhesion, most probably by modulating cadherin and catenin levels and activities. These findings may aid in the development of novel methods useful for the treatment of skin adhesion diseases and tumor metastasis.  相似文献   

4.
T L Lentz  E Hawrot  P T Wilson 《Proteins》1987,2(4):298-307
Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha-subunit peptide most likely contains all of the determinants for binding of the toxin and glycoprotein peptides present on the alpha-subunit, because these peptides bind to the 32-residue alpha-subunit peptide with the same or greater affinity as to the intact subunit.  相似文献   

5.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

6.
The interactions of eight piperidine derivatives with nicotinic receptor complexes fromTorpedo californica electric organ were studied using [125I]alpha-bungarotoxin ([125I]BGT) as a probe for the acetylcholine binding site and [3H]perhydrohistrionicotoxin ([3H]H12-HTX) as a probe for a site associated with the receptor-gated ion channel.Cis- andtrans-2-methyl-6-n-undecanyl piperidines (MUP), major constituents of fire ant venom, had a high-affinity for [3H]H12-HTX binding sites (Ki=0.08–0.24 M), but had no affect on receptor binding. MUP affinity for [3H]H12-HTX binding sites was approximately doubled in the presence of 1 M carbamylcholine. Introduction of a 2-hydroxyl group to the undecanyl side channel had little effect on activity of the alkaloid. The analog 2,6- (but not 3,5-) dimethylpiperidine was a moderately active inhibitor of [3H]H12-HTX binding (K i-8.8 M). 2-Methylpiperidine was considerably less active (K i=600 M), although it was more potent than either 3- or 4-methylpiperidine. The affinities of 2,6-dimethylpiperidine and 2-methylpiperidine for [3H]H12-HTX binding sites were decreased in the presence of 1 M carbamylcholine. Carbamylcholine affinity for the receptor was increased by up to 7 fold in the presence of 10 and 32 M MUP, but was decreased in the presence of 2,6-dimethylpiperidine and 2-methylpiperidine. Thecis- andtrans-isomers of MUP were equipotent in producing each of its effects. In these actions, MUP resembles a variety of other compounds derived from 2,6-disubstituted piperidines, including histrionicotoxins, gephyrotoxins and pumiliotoxins. These studies establish the importance of alkyl substitutions in theortho position of the piperidine ring in conferring ion channel specificity, and the importance of substantial alkyl side chains in conferring the ability of channel blockers to stabilize the nicotinic receptor complex in high affinity, desensitized conformations.  相似文献   

7.
Identification of Acetylcholinesterase Receptors in Rotifera   总被引:2,自引:2,他引:0  
We have identified acetylcholinesterase (AChE) receptors in six freshwater rotifers. Using β-bungarotoxin labelled with fluoresceinisothiocyanate (FITC), muscarinic and nicotinic receptors were found in Brachionus quadridentatus (females and males), Lecane luna, Lecane quadridentata, Plationus patulus, and Rotaria neptunia. Using α-bungarotoxin-FITC, nicotinic receptors were identified in B. quadridentatus, Lecane bulla, L. luna, L. quadridentata, P. patulus and R. neptunia. Concentrations as low as 1.5 nM of β-bungarotoxin, and 5 nM of α-bungarotoxin identified receptors in the digestive tract. Higher concentrations of both toxins identified additional receptors associated with the lorica. A preliminary analysis of fluorescence intensity in L. quadridentata showed that response to α-bungarotoxin increases with age from newborn to 48-h old, but not in older individuals, thus suggesting an increase in binding sites, and possibly in number of nicotinic receptors, during the first 48-h of life. Our study extends the number of rotifer species in which AChE receptors have been reported.  相似文献   

8.
The central neuropile of thoracic ganglia in the central nervous system (CNS) of the cockroach Periplaneta americana contains synapses with characteristic pre- and post-synaptic membrane specializations and associated structures. These include dense pre-synaptic T-bars surrounded by synaptic vesicles, together with post-synaptic densities of varying electron opacity. Exocytotic release of synaptic vesicles is observed only rarely near presynaptic densities, but coated pits are seen at variable distances from them, and may be involved in membrane retrieval. After freeze-fracture, paralinear arrays of intramembranous particles (IMPs) are detected on the P face of many presynaptic terminals, with associated dimples indicative of vesicular release. The E face of these membranes exhibits protuberances complementary to the P face dimples, as well as scattered larger IMPs. Post-synaptic membranes possess dense IMP aggregates on the P face, some of which may represent receptor molecules. Electrophysiological studies with biotinylated α-bungarotoxin reveal that biotinylation does not inhibit the pharmacological effectiveness of the toxin in blocking acetylcholine receptors on an identified motoneurone in the metathoracic ganglion. Preliminary thin section ultrastructural analysis of this tissue post-treated with avidin-HRP or avidin-ferritin indicates that α-bungarotoxin-binding sites are localized at certain synapses in these insect thoracic ganglia.  相似文献   

9.
The aim of this study was to compare the degree of occupancy of central nicotinic acetylcholine receptors (nAChR) in isoflurane anaesthetized baboon brain following inhalation of tobacco smoke (one cigarette containing 0.9 mg nicotine) or i.v. nicotine (0.6 mg i.v.). [18F]Fluoro-A-85380 and positron emission tomography (PET) were used to assess the distribution volumes (DV) of the radiotracer in selected brain areas using a one-compartment model. Eighty minutes after nicotine i.v., DV was reduced by 50 and 66% in the thalamus and putamen, respectively. Six hours after nicotine, a reduction in DV (27% in the thalamus) was still observed. Eighty minutes after inhalation of tobacco smoke, DV was decreased by 52 and 65% in the thalamus and putamen, respectively. Previous PET experiments have demonstrated a short-lasting interaction of [11C]nicotine with nAChRs. Thus, we hypothesized that a metabolite of nicotine with high affinity and long half-live (several hours) could bind at nAChRs. Eighty minutes after a high dose of nornicotine (0.5 mg i.v.), DV was reduced by 53 and 31% in thalamus and putamen, respectively. No significant effect was observed following 0.15 mg nornicotine. Therefore, nornicotine could contribute to the long-lasting occupancy of central nAChRs after smoking.  相似文献   

10.
The α-methylated derivatives of tryptophan, tyrosine, and dihydroxyphenylalanine were injected into cockroaches (Periplaneta americana). The levels of these compounds and those of dopamine, 5-hydroxytryptamine, tyrosine, and tryptophan in the nervous tissue, hemolymph, and fat body were measured at various times after drug administration. Levels of 5-hydroxytryptamine and tryptophan in the nervous tissue are significantly reduced by α-methyltryptophan administration. Concentrations of dopamine in nervous tissue are reduced by α-methyltyrosine administration. This effect also persists for several weeks, and α-methyltyrosine is observed in the nervous tissue 3 weeks after injection. Levels of dopamine and 5-hydroxytryptamine in the nervous tissue are unaffected by α-methyldihydroxyphenylalanine, and this compound is less persistent in nervous tissue than α-methyltyrosine or α-methyltryptophan demonstrates that these compounds can be absorbed and affect amine levels in the nervous tissue when included in the diet. Inhibition of tryptophan hydroxylation by crude enzyme preparations of cockroach nervous tissue was demonstrated with both α-methyltryptophan and α-methyltyrosine, with α-methyltryptophan being the more effective inhibitor. Aromatic amino acid decarboxylase activity toward dihydroxyphenylalanine in crude enzyme preparations of cockroach nervous tissue was strongly inhibited by α-methyldihydroxyphenylalanine and monofluoromethyldihydroxyphenylalanine, slightly inhibited by α-methyltyrosine and unaffected by α-methyltryptophan at concentrations up to 10?3 M. The results indicate that α-methyltyrosine and α-methyltryptophan, but not α-methyldihydroxyphenylalanine, can selectively alter amine concentrations in insect nervous tissue and that insects are only poorly able to metabolize or excrete these compounds. The selective and long-lasting depletion of dopamine or 5-hydroxytryptamine by some of these compounds suggest that they may be useful in behavioral studies designed to elucidate the roles of these amines in insects.  相似文献   

11.
Acetylcholine receptors were assayed with α-bugarotoxin on embryonic chick skeletal muscle growing in primary cell culture. Toxin was bound specifically to muscle cells and could be competed with D-tubocurarine. Two dissociation constants were obtained by equilibrium binding: 7.2 × 10?9M and 2.7 × 10?7M at 25°C. Two sets of rate constants were also obtained from dissociation kinetics. There are five times more low affinity sites on cells than high affinity sites. The average density of high-affinity receptors is about 200/μm2. A time course of toxin binding to receptors at 37°C vs 25°C in growth medium revealed that under conditions permitting growth and metabolism, toxin bound to cells was lost. The possibility that the growth medium was in-activating toxin molecules was ruled out by showing that unbound toxin molecules in the medium were fully capable of binding to fresh cultures.  相似文献   

12.
In the search for nicotinic acetylcholine receptor (nAChRs) agonists with a selective affinity for the homomeric α7 channels, we carried out the virtual screening of a test set of potential nicotinic ligands, and adopted a simplified MM-PBSA approach to estimate their relative binding free energy values. By means of this procedure, previously validated by a training set of compounds, we reached a realistic compromise between computational accuracy and calculation rate, and singled out a small group of novel structurally related derivatives characterized by a promising theoretical affinity for the α7 subtype. Among them, five new compounds were synthesized and assayed in binding experiments at neuronal α7 as well as α4β2 nAChRs.  相似文献   

13.
Membrane fragments rich in cholinergic (nicotinic) receptor protein were purified from the electric organ of Torpedo marmorata. Their lipid composition is essentially characterized by the prominence of cholesterol, phosphatidylethanolamine and phosphatidylcholine, long-chain fatty acyl constituents, and the absence of sphingomyelin. Solubilised receptor was purified from these fragments and the concentration of sodium cholate lowered by dialysis to 0.01% (w/v). When this preparation was injected under a lipid monolayer, an increase of surface pressure developed, which was not observed with the detergent alone nor in the absence of lipid film. When covalently radiolabelled receptor preparations were injected at a constant surface pressure the radioactivity recovered with the film was proportional to the increase in area. It is concluded that the pressure or area increases are due to the penetration of the cholinergic receptor protein into the lipid film. Incorporation experiments into films formed from various pure lipids showed that the protein interacts more readily with cholesterol than with ergosterol, phosphatidylcholine, or other phospholipids. Its affinity is also higher for long-chain phosphatidylcholines than for short-chain ones. The degree of unsaturation and fluidity of the 3-sn-phosphatidylcholine (lecithin) films are of secondary importance. Parallel experiments with covalently and non-covalently labelled receptor preparations showed that part of the protein recovered with the film lost its alpha-toxin binding ability during the penetration. Similar data were obtained with the receptor purified from Electrophorus electricus electric organ.  相似文献   

14.
This paper provides answers to the questions which of the toxins present in the venom of the wasp Philanthus triangulum may be responsible for the previously reported blockage of transmission through the sixth abdominal ganglion of the cockroach, and whether this may occur by block of synaptic transmission or by affecting axonal exitability. In current clamp experiments the crude venom induces a slight depolarization of the membrane of the giant axon from the sixth abdominal ganglion of the cockroach and a small and irreversible decrease in the amplitude of the action potential. These marginal effects are not seen with relatively high concentrations of the philanthotoxins β-PTX and δ-PTX. It appears that neither the crude venom nor the toxins significantly affect the excitability of the cockroach giant axon. At a concentration of 20 μg ml?1 δ-PTX causes a slowly reversible block of synaptic transmission from the cercal nerve XI to a giant interneuron without any change in resting membrane potential, whereas β-PTX is inactive. Iontophoretically evoked acetylcholine potentials of the giant neuron are more sensitive to δ-PTX than excitatory postsynaptic potentials. This suggests that the toxin acts on the postsynaptic membrane.  相似文献   

15.
16.
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect brain and are targets for neonicotinoid insecticides. Some proteins, other than nAChRs themselves, might play important roles in insect nAChRs function in vivo and in vitro , such as the chaperone, regulator and modulator. Here we report the identification of two nAChR modulators (Nl-lynx1 and Nl-lynx2) in the brown planthopper, Nilaparvata lugens . Analysis of amino acid sequences of Nl-lynx1 and Nl-lynx2 reveals that they are two members of the Ly-6/neurotoxin superfamily, with a cysteine-rich consensus signature motif. Nl-lynx1 and Nl-lynx2 only increased agonist-evoked macroscopic currents of hybrid receptors Nlα1/β2 expressed in Xenopus oocytes, but not change the agonist sensitivity and desensitization properties. For example, Nl-lynx1 increased I max of acetylcholine and imidacloprid to 3.56-fold and 1.72-fold of that of Nlα1/β2 alone, and these folds for Nl-lynx2 were 3.25 and 1.51. When the previously identified Nlα1Y151S mutation was included (Nlα1Y151S/β2), the effects of Nl-lynx1 and Nl-lynx2 on imidacloprid responses, but not acetylcholine response, were different from that in Nlα1/β2. The increased folds in imidacloprid responses by Nl-lynx1 and Nl-lynx2 were much higher in Nlα1Y151S/β2 (3.25-fold and 2.86-fold) than in Nlα1/β2 (1.72-fold and 1.51-fold), which indicated Nl-lynx1 and Nl-lynx2 might also serve as an influencing factor in target-site insensitivity in N. lugens . These findings indicate that nAChRs chaperone, regulator and modulator may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance.  相似文献   

17.

1. 1.|Body temperature preferences were compared between cockroaches acclimated to different ambient temperatures and between 25°C acclimated cockroaches and cockroaches deprived of their peripheral temperature receptors.

2. 2.|Acclimation to 35°C resulted in a significantly higher mean body temperature and low body temperature selected compared with 25°C acclimated cockroaches.

3. 3.|Cockroaches deprived of their peripheral temperature receptors showed a significantly higher mean high body temperature selected when compared to normal 25°C acclimated cockroaches.

4. 4.|It is concluded that cockroach temperature regulation is more precise than expected and that central temperature receptors are the primary sensing elements for cockroach thermoregulation.

Author Keywords: Temperature preference; thermoregulation; Periplaneta americana; peripheral temperature receptors  相似文献   


18.
A novel set of azabicyclic aryl amides have been identified as potent and selective agonists of the α7 nAChR. A two-pronged approach was taken to improve the potential hERG liability of previously disclosed α7 nAChR agonist, PNU-282,987, while maintaining the compound’s other desirable pharmacological properties. The first approach involved further exploration of the aryl carboxylic acid fragment of PNU-282,987, while the second approach focused on modification of the azabicyclic amine portion of PNU-282,987. The best compounds from each series are characterized by rapid brain penetration, good oral bioavailability in rat, and demonstrate in vivo efficacy in a rat P50 auditory sensory gating assay. At least one analog from each series (1h, 1o, 2a, 9a, and 18a) shows an improved hERG safety profile over PNU-282,987.  相似文献   

19.
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7‐nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca2+ signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca2+ signaling and cell viability. We used human SH‐SY5Y neuroblastoma cells overexpressing α7‐nAChRs (α7‐SH) and their control (C‐SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca2+ with Fura‐2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch‐clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7‐SH but not of C‐SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca2+ concentration; (iii) released Ca2+ from the ER by a Ca2+‐induced Ca2+ release mechanism only in α7‐SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7‐nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7‐nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca2+, overloading of intracellular Ca2+, and neuronal cell death.

  相似文献   


20.
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*‐nAChR are down‐regulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose–responses and quantitative ligand‐binding autoradiography were used to define nicotine sensitivity of changes in α4β2*‐nAChR and α6β2*‐nAChR expression. α6β2*‐nAChR down‐regulation by chronic nicotine exposure in dopaminergic and optic‐tract nuclei was ≈three‐fold more sensitive than up‐regulation of α4β2*‐nAChR. In contrast, nAChR‐mediated [3H]‐dopamine release from dopamine‐terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR‐mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]‐DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号