首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
A 1:1 complex of mercuric chloride with D-peniccillamine has been isolated and characterised as 2[(μ3-Cl){HgSC(CH3)2CH(NH3)COO}3]·3(μ2-Cl)·2(H3O)·(H2O·Cl)3. The compound crystallises in cubic space group P4132, with a = 18.679(5) Å and Z = 4. The structure, refined to RF = 0.086 for 443 observed Mo-Kα diffractometer data, features a triply bridging chloride ion linking three equivalent [HgSC(CH3)2CH(NH3)COO]+ units [Hg-Cl = 2.37(1) Å, Hg-Cl-Hg′ = 98.5(9)°]. The carboxylate groups of a pair of adjacent penicillamine ligands are strongly linked via a symmetrical O?H?O hydrogen bond of length 2.24(8) Å, and neighboring pyramidal trinuclear [μ3-Cl){HgSC(CH3)2CH(NH3)-COO}3]2+ moieties are further connected by symmetrical chloride bridges [Hg-Cl = 3.06(2) Å; HgClHg′' = 79.6(7)°] to form a three-dimensional network. The voids in the lattice are filled by hydronium ions and novel planar cyclic hydrogen-bonded (H2O·Cl?)3 rings of edge O-H?Cl = 2.46(4) Å.  相似文献   

3.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

4.
The crystal structure of the nonapeptide Boc-D -Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, ?, ψ values for residues 1–8 are ?59° and ?32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| > 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i ? 1)N(i)Cα(i)Cβ(i), where κ = 68° for D -Phe and κ = 164° for L -Leu, confirms the opposite configurations of these residues. The ?, ψ values of ?62° and ?32° at D -Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Three new pigments, named versicolorins A, Band C, as metabolites from the mycelium of Aspergillus versicolor have been isolated. Versicolorin A, C18H10O7, is fine orange yellow needles, m.p. 289°C (decomp.), [α]D-354°. It is an anthraquinoid pigment having three hydroxyl groups and a vinyl ether system contained in a five-membered ring. Versicolorin A trimethyl ether was hydrogenated to a dihydro-derivative, and by oxidation gave 3,5-dimethoxyphthalic acid and a hydroxy acid which may be 1,6,8-trirnethoxy-3-hydroxy anthraquinone-2-carboxylic acid. These chemical behavior and NMR data show that versicolorin A probably has the structure of (I). Versicolorin B, C18H12O7, is fine orange yellow needles, m.p., 298°C (decomp.), [α]D-223° Its trimethyl ether is identical with that of dihydroversicolorin A. Therefore, the structure (II) could be assigned to versicolorin B. Versicolorin C, C18H12O7, is orange red needles, m.p.>310°C, [α]D O° Comparison of optical properties, IR and NMR spectra of versicolorin B and its methyl ether with those of versicolorin C and its methyl ether indicates that versicolorin C is very probably a racemate of versicolorin B.  相似文献   

6.
《Inorganica chimica acta》1988,153(4):219-225
The preparations are reported of [Rh(RCO2)2L]2 [where R = CH3, C2H5, and CH3OCH2; L = 6-chloro-2-methoxy-9-[2(NR′2)ethyl]aminoacridine (R′ = H, CH3)]. X-ray structural studies have been carried out on two of the compounds [ R = C2H5, R′ = H, (1); R = CH3, R′ = CH3, (2)]. Compound 1 is monoclinic, space group C2/c, with a = 20.864(11), b = 15.736(4), c = 14.402(4) Å, β = 93.14(4)°, V = 4721 Å3, and Z = 4; 2 is monoclinic, space group P21/n, a = 8.861(2), b = 23.089(10), c = 12.014(2) Å, β = 105.84(2)°, V = 2365 Å3, and Z = 2. Both compounds comprise the standard dinuclear rhodium(II) carboxylate unit with the substituted acridine ligands coordinated to rhodium in the axial positions, via the NH2 group nitrogen in 1 and the N(CH3)2 nitrogen in 2.The dimethyl substitution on the tertiary amine group in 2, and an associated conformational change in the diamine chain, result in an increased separation of the acridine ligand from the metal centre. There is a pronounced acridine base stacking in 1 but not in 2.  相似文献   

7.
[N,N′-bis(2′-pyridinecarboxamido)-1,3-propane] - nickel(II) monohydrate, C15H16N4O3Ni is monoclinic, space group P21/c, with a = 7.174(4), b = 18.590(3), c = 11.641(5) Å, β = 110.69(2)°, Z = 4. The structure was refined to R = 0.030 for 1826 diffractometer data using full-matrix least-squares methods. The N4-ligand coordinates to the nickel atom in an irregular square plane [average Ni-Namide 1.864(4), Ni-Npyridine 1.912(3) Å and Namide-Ni-Namide 96.0(1), Npyridine-Ni-Npyridine 98.7(1)°] with a tetrahedral twist of 15.9° at the nickel atom. The two picolinamide units are related by an approximate two-fold axis and the enforced strain in the molecule results in significant non-planar distortions in the amide chelate rings and the pyridyl rings. The plane of the chelate molecule lies approximately perpendicular to [100] and the lattice water molecule hydrogen bonds amide oxygen atoms to form chains parallel to [101]  相似文献   

8.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

9.
Iron(III) complexes of three aroyl hydrazones, pyridoxal isonicotinoyl hydrazone (H2pih), pyridoxal benzoyl hydrazone (H2pbh), and salicylaldehyde benzoyl hydrazone (H2sbh), were synthesized and characterized. In aqueous medium at pH 7, [Fe(pih)(Hpih)]·3H2O is formed. In acidic methanol, a 1:1 ligand-to-metal complex is formed, [FeCl2(H2pih)]Cl (1), whereas in aqueous medium at low pH cis-[FeCl2(H2pih)(H2O)]Cl·H2O (2) is formed. Compounds 1 and 2 are high-spin d5 with μeff = 5.88 μB and 5.93 μB (298 K). The crystal structures of 1 and 2 show that H2pih acts as a tridentate neutral ligand in which the phenolic and hydrazidic protons have shifted to the pyridine nitrogen atoms. The co- ordination polyhedron of 1 is ‘square’ pyramidal, whereas that of 2 is pseudo-octahedral. Compound 1 is triclinic, space group Pl, with a = 12.704(2) Å, b = 8.655(2) Å, c = 8.820(2) Å, α = 105.42(1)°, β = 89.87(1)°, γ = 107.60(1)°, V = 888 Å3, and Z = 2; 2 is monoclinic, space group P21/c, with a = 15.358(4) Å, b = 7.304(3) Å, c = 17.442(4) Å, β = 101.00(2)°, V = 1921 Å3, and Z = 4.  相似文献   

10.
The cyclobutane ring (CB) puckering of a cissyn DNA photodimer (cissyn d-T[p]T) differs from that of a cissyn RNA photodimer (cissyn r-U [p] U) [J.-K. Kim and J. L. Alderfer (1992) Journal of Biomolecular Structure and Dynamics, Vol. 9 , p. 1705]. In cissyn d-T [p] T, interconversion of the CB ring between CB+ and CB? is observed, while in cissyn r-U [p] U only CB? is observed. In the CB+ conformation, the two thymine rings of the dimer are twisted in a right-handed fashion, as are the bases in B-form DNA. In case of CB? they are twisted in a left-handed fashion. The C5 (base) and/or C2′ (sugar) substituents apparently affect the CB ring flexibility in cissyn d-T [p] T and cissyn r-U [p] U. To study the effects of the C5 substituent on CB ring flexibility, two-dimensional nuclear Overhauser effect (NOE) and 31P-nmr experiments were performed on cissyn d-T [p] U, cissyn d-U [p] T, and cissyn d-U [p] U photodimers to investigate the CB puckering mode and overall molecular conformation and dynamics. The NOE results indicate the 5-methyl group in the photodimer induces conformational flexibility of the CB ring. In cissyn d-T [p] U and cissyn d-U [p] T, both CB+ and CB? puckering modes are observed. This indicates interconversion between two modes takes place as observed in cissyn d-T [p] T. In the case of cissyn d-U [p] U, only the puckering CB? mode is observed. All three DNA-type dimers—cissyn d-T [p] U, cissyn d-U [p] T, cissyn d-U [p] U—show a characteristic flexibility of glycosidic bonds at the 5′ residue; cissyn d-T [p] T demonstrates synanti interconversion for both the 3′ and 5′ sides, while the others are exclusively anti on the 3′ side. In contrast, the ribophotodimer, cissyn r-U [p] U, lacking the C5 methyls and having a C2′-OH, demonstrates no conformational flexibility in the CB ring or in either of the glycosidic bonds. Differential flexibility of the three DNA-type dimers (cissyn d-T [p] U, cissyn d-U [p] T, cissyn d-U [p] U) and the RNA dimer (cissyn r-U [p] U) in the sugar-phosphate backbone region is also apparent from the temperature dependence of the 31P chemical shifts of these photodimers compared to their normal dimer analogues. Over the temperature range 18-63°C, the chemical shift change is reduced 22–42% in three DNA-type dimers, while it is reduced 71% in cissyn r-U [p] U, suggesting the RNA-type dimer is more rigid. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Trifluoromethylphenyl amides (TFMPAs) were designed and synthesized as potential pesticides. Thirty‐three structures were evaluated for fungicidal activity against three Colletotrichum species using direct bioautography assays. Active compounds were subsequently tested against C. fragariae, C. gloeosporioides, C. acutatum, Phomopsis obscurans, P. viticola, Botrytis cinerea and Fusarium oxysporum. The study identified 2‐chloro‐N‐[2,6‐dichloro‐4‐(trifluoromethyl)phenyl]acetamide ( 7a ) as showing the strongest antifungal activity, and the broadest activity spectrum in this set against Colletotrichum acutatum (at 48 and 72 h) and Phomopsis viticola (at 144 h). The presence of triethylamine in its complex with N‐[2,6‐dichloro‐4‐(trifluoromethyl)phenyl]‐2,2,3,3,3‐pentafluoropropanamide ( 7b′ ) played an important role in the bioactivity, and depending on the concentration or fungal species it showed higher or lower activity than the parent amide. X‐Ray crystallography has shown that the complex ( 7b′ ) is an ion pair, (C10H2Cl2F8NO)? (C6H16N)+, where a proton is transferred from the amide nitrogen to the triethylamine nitrogen and then connected by hydrogen bonding to the acyl oxygen (N?H 0.893 Å; H???O 1.850 Å; N???O 2.711 Å; N?H???O 161.2(13)°). Although none of these compounds were better than standards, this work revealed some potential lead structures for further development of active novel compounds.  相似文献   

12.
The crystal structures of two copper(II) complexes of 4-fluorophenoxyacetic acid (4-FPAH) have been determined by X-ray diffraction. [Cu(4-FPA)2(H2O)2]·2(4-FPAH)·2H2O (1) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 14.808(2), b = 9.832(2), c = 6.847(2) Å, α = 87.77(2), β = 98.41(2), γ = 112.33(2)° and was refined to a residual of 0.038 for 1697 ‘observed’ reflections. The coordination sphere in this complex is tetragonally distorted octahedral comprising two waters [CuO, 1.940(3) Å], two unidentate carboxylate oxygens [CuO, 1.942(2) Å] and two ether oxygens [CuO, 2.471(2) Å]. Two adducted [4-FPAH] acid molecules are linked to the un-coordinated oxygens of the acid ligands by hydrogen bonds [2.547(4) Å]. [Cu2(4-FPA)4(2-aminopyrimidine)2] (2) is triclinic, space group P1 with Z = 1 in a cell of dimensions a = 12.688(2), b = 11.422(2), c = 7.951(1) Å, α = 78.74(1), β = 107.51(1), γ = 75.78(1)°, and was refined to a residual of 0.042 for 2683 ‘observed’ reflections. (2) is a centrosymmetric tetracarboxylate bridged dimer with four similar CuO (equatorial) distances [1.967–1.987 Å; 1.977(3) Å mean] and the axial position occupied by the hetero nitrogen of the 2-aminopyrimidine ligand [CuN, 2.176(3) Å]. The Cu---Cu separation is 2.710(1) Å. Crystal data are also presented which confirm the isostructurality of complex (2) with [Cu2(phenoxyacetate)4(2-aminopyrimidine)2], the CoII, MgII and MnII4-fluorophenoxyacetate complexes with their phenoxyacetic and 4-chlorophenoxyacetic acid analogues, and of CdII4-fluorophenoxyacetate with CdII and ZnII phenoxyacetates.  相似文献   

13.
Alkaline degradation of Aurasperone A, C32H26O10, gave a binaphthyl (IIa), m.p. 255°C and acetone. (IIa) afforded a tetraacetate (IIb), C32H30O12 m.p. 219°C and a tetramethyl ether (IId), C28H30O8, m.p. 188°C. These facts along with the NMR spectra of aurasperone A and (IIb) confirm that aurasperone A is a dimeric 2-methyl-5-hydroxy-6,8-dimethoxy-4H-naphtho[2,3-b]pyran-4-one with asymmetric C-C linkage (7-10′ or 9-10′). The ether (IId) is not identical with 1,1′ ,3,3′ ?6,6′ ,8,8′-octamethoxy-4,4′-binaphthyl. Thus, it follows that (IId) is a 2,4′-binaphthyl and hence aurasperone A is 2,2′-dimethyl-5,5′- dihydroxy-6,6′,8,8′-tetrahydroxy-7,10′-bi[4H-naphtho[2,3-b]pyran-4-one] (I).  相似文献   

14.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

15.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
2,2′-Diaminobiphenyl-R,R-trans-1,2-diaminocyclohexaneplatinum(II) Chloride Trihydrate, (R,R-chxn)(dabp)Pt]Cl2·3H2O, crystallizes in the space group p212121 (D24, No. 19) with a = 6.219(4) Å, b = 17.633(2) Å, c = 21.523(3) Å, V = 2,360.4(8) Å3, ?calcd = 1.739 g cm?3, ?measd = 1.74 g cm?3, and Z = 4. Diffraction data were collected with a Picker FACS-1 four-circle diffractometer. The structure was solved by the heavy atom method and refined by least-square calculations to residuals R = 0.0586 and weighted R = 0.0668. The 2,2′-diaminobiphenyl ligand exhibits complete stereospecificity in its coordination to platinum(II) ion with λ chiral conformation.  相似文献   

17.
The crystal structure of a dipeptide L -leucyl–L -leucine (C12H24N2O3) has been determined. The crystals are monoclinic, space group P21, with a = 5.434(4) Å, b = 15.712(7) Å, c = 11.275(2) Å, β = 100.41(1)°, and Z = 2. The crystals contain one molecule of dimethyl sulfoxide (DMSO) as solvent of crystallization for each dipeptide molecule. The structure has been solved by direct methods and refined to a final R index of 0.059 for 920 reflections (sinθ/λ ? 0.60 Å?1) with I ? 2σ (I). The trans peptide unit shows substantial degree of non-planarity (Δω = 14°). The peptide backbone adopts an extended conformation with torsion angles of ψ1 = 138(1)°, ω1 = 166(1)°, ?2 = ? 149.3(7)°, ψ21 = 164.2(7)°, and ψ22 = ? 15(1)°. For the first leucyl residue, the side-chain conformation is specified by the torsion angles 1χ1 = 176.7(7)°, 1χ21 = 62(1)°, 1χ22 = ? 177.4(8)°; the second leucyl residue adopts a Sterically unfavorable conformation with 2χ1 = 61(1)°, 2χ21 = 97(1)°, and 2χ22 = ?151(1)°. The packing involves head-to-tail interaction of peptide molecules and segregation of polar and nonpolar regions. The DMSO molecule is strongly hydrogen bonded to the terminal NH group. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The crystal structures of the cadmium(II) and lead(II) complexes of phenoxyacetic acid (PAH) have been determined by single crystal X-ray diffraction techniques. The cadmium complex, [Cd(PA)2(H2O)2] (1), space group C2, with Z = 2 in a cell of dimensions, a = 11.801(2), b = 5.484(1), c = 13.431(3) Å, β = 100.87(2)°, possesses a distorted trapezoidal bipyramidal coordination around the metal atom, involving two water oxygens [2.210(5) Å] and four carboxyl oxygens from two symmetrical bidentate phenoxyacetate ligands [2.363(4), 2.365(4) Å] with Cd lying on the crystallographic two- fold axis. The lead complex, [Pb2(PA)4(H2O)]n(2) is triclinic, space group P1, Z = 2, with a cell of dimensions, a = 10.135(4), b = 10.675(3), c = 19.285(9) Å, α = 114.66(3), β = 91.94(3) and γ = 114.99(3)°. (2) is a two-dimensional polymer with a repeating dimer sub-unit. The first lead [Pb(1)] has an irregular MO8 coordination [2.34?2.96(2) Å: mean, 2.63(2) Å] involving the water molecule, two oxygens from an asymmetric bidentate carboxylate group, two from a bidentate chelate [O(ether), O(carboxylate)] group and three from bridging oxygens, one of which also provides a polymer link to another symmetry generated lead. The second lead [Pb(2)] is irregular seven-coordinate [PbO, 2.48?2.73(2) Å: mean, 2.61(2) Å] with three bonds from the bridging groups, two from an unsymmetrical bidentate carboxylate (O, O′) group and one from a second carboxyl group which also bridges two Pb(2) centres in the polymer.  相似文献   

19.
《Inorganica chimica acta》1988,146(2):181-185
The reactions between [TcOCl4] and the sterically bulky thiols ArSH (Ar = 2,4,6-Me3C6H2, 2,4,6- Pri3C6H2 and 2,6-Ph2C6H3) in methanol afford complexes of formula [TcO(SAr)4] which may be isolated as salts with bulky organic cations. The molecular structure of [Bun4N][TcO(2,4,6-Me3C6H2S)4] was determined by X-ray diffraction methods. The Tc(V) centre was found to adopt the expected square pyramidal geometry in which an oxo group occupies the apical site and the four thiolate sulphurs the basal sites. The TcO distance is 1.659(11) Å and the average TcS distance 2.38(2) Å. The average cis STcS, trans STcS and OTcS angles are respectively 82.7(6)°, 138.4(3)° and 110.8(4)°.  相似文献   

20.
《Inorganica chimica acta》1988,148(1):101-104
The compound In[(pz)2BH2]3 (pz = 1-pyrazolyl, C3H3N2) was prepared from In(NO3)3 and K[(pz)2-BH2] in water, and characterised by spectroscopic and X-ray methods. Crystals are orthorhombic,Pna21,a = 20.279(4),b = 8.884(2),c = 13.411(2)Å;R = 0.0285. Individual molecules contain a near-regular six-coordinate indium atom with In–N (av.) 2.241(5)Å. The pyrazolyl borate ligands are puckered, with dihedral angles between the two rings of each ligand in the range 133–144°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号