首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   

2.
Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.  相似文献   

3.
The pyridine nucleotides NAD(H) and NADP(H) play major roles in the formation of by-products. To analyse how Saccharomyces cerevisiae (S. cerevisiae) metabolism during growth on glucose might be altered when intracellular NADH pool is decreased, we expressed noxE encoding a water-forming NADH oxidase from Lactococcus lactis (L. lactis) in the S. cerevisiae strain V5. During batch fermentation under controlled microaeration conditions, expression of the NADH oxidase under the control of a yeast promoter lead to large decreases in the intracellular NADH concentration (five-fold) and NADH/NAD+ ratio (six-fold). This increased NADH consumption caused a large redistribution of metabolic fluxes. The ethanol, glycerol, succinate and hydroxyglutarate yields were significantly reduced as a result of the lower NADH availability, whereas the formation of more oxidized metabolites, acetaldehyde, acetate and acetoin was favoured. The biomass yield was low and consumption of glucose, at concentration above 10%, was impaired. The metabolic redistribution in cells expressing the NADH oxidase was a consequence of the maintenance of a redox balance and of the management of acetaldehyde formation, which accumulated at toxic levels early in the process.  相似文献   

4.
S. Velmurugan  Z. Lobo    P. K. Maitra 《Genetics》1997,145(3):587-594
  相似文献   

5.
Water-forming NADH oxidases (encoded by noxE, nox2, or nox) are flavoproteins generally implicated in the aerobic survival of microaerophilic bacteria, such as lactic acid bacteria. However, some natural Lactococcus lactis strains produce an inactive NoxE. We examined the role of NoxE in the oxygen tolerance of L. lactis in the rich synthetic medium GM17. Inactivation of noxE suppressed 95% of NADH oxidase activity but only slightly affected aerobic growth, oxidative stress resistance, and NAD regeneration. However, noxE inactivation strongly impaired oxygen consumption and mixed-acid fermentation. We found that the A303T mutation is responsible for the loss of activity of a naturally occurring variant of NoxE. Replacement of A303 with T or G or of G307 with S or A by site-directed mutagenesis led to NoxE aggregation and the total loss of activity. We demonstrated that L299 is involved in NoxE activity, probably contributing to positioning flavin adenine dinucleotide (FAD) in the active site. These residues are part of the strongly conserved sequence LA(T)XXAXXXG included in an alpha helix that is present in other flavoprotein disulfide reductase (FDR) family flavoproteins that display very similar three-dimensional structures.  相似文献   

6.
In the yeast, Saccharomyces cerevisiae, pyruvate decarboxylase (Pdc) is encoded by the two isogenes PDC1 and PDC5. Deletion of the more strongly expressed PDC1 gene stimulates the promoter activity of both PDC1 and PDC5, a phenomenon called Pdc autoregulation. Hence, pdc1Delta strains have high Pdc specific activity and can grow on glucose medium. In this work we have characterized the mutant alleles pdc1-8 and pdc1-14, which cause strongly diminished Pdc activity and an inability to grow on glucose. Both mutant alleles are expressed as detectable proteins, each of which differs from the wild-type by a single amino acid. The cloned pdc1-8 and pdc1-14 alleles, as well as the in-vitro-generated pdc1-51 (Glu51Ala) allele, repressed expression of PDC5 and diminished Pdc specific activity. Thus, the repressive effect of Pdc1p on PDC5 expression seems to be independent of its catalytic activity. A pdc1-8 mutant was used to isolate spontaneous suppressor mutations, which allowed expression of PDC5. All three mutants characterized had additional mutations within the pdc1-8 allele. Two of these mutations resulted in a premature translational stop conferring phenotypes virtually indistinguishable from those of a pdc1Delta mutation. The third mutation, pdc1-803, led to a deletion of two amino acids adjacent to the pdc1-8 mutation. The alleles pdc1-8 and pdc1-803 were expressed in Escherichia coli and purified to homogeneity. In the crude extract, both proteins had 10% residual activity, which was lost during purification, probably due to dissociation of the cofactor thiamin diphosphate (ThDP). The defect in pdc1-8 (Asp291Asn) and the two amino acids deleted in pdc1-803 (Ser296 and Phe297) are located within a flexible loop in the beta domain. This domain appears to determine the relative orientation of the alpha and gamma domains, which bind ThDP. Alterations in this loop may also affect the conformational change upon substrate binding. The mutation in pdc1-14 (Ser455Phe) is located within the ThDP fold and is likely to affect binding and/or orientation of the cofactor in the protein. We suggest that autoregulation is triggered by a certain conformation of Pdc1p and that the mutations in pdc1-8 and pdc1-14 may lock Pdc1p in vivo in a conformational state which leads to repression of PDC5.  相似文献   

7.
Pyruvate decarboxylase is a key enzyme in the production of low-molecular-weight byproducts (ethanol, acetate) in biomass-directed applications of Saccharomyces cerevisiae. To investigate whether decreased expression levels of pyruvate decarboxylase can reduce byproduct formation, the PDC2 gene, which encodes a positive regulator of pyruvate-decarboxylase synthesis, was inactivated in the prototrophic strain S. cerevisiae CEN. PK113-7D. This caused a 3-4-fold reduction of pyruvate-decarboxylase activity in glucose-limited, aerobic chemostat cultures grown at a dilution rate of 0.10 h(-1). Upon exposure of such cultures to a 50 mM glucose pulse, ethanol and acetate were the major byproducts formed by the wild type. In the pdc2Delta strain, formation of ethanol and acetate was reduced by 60-70%. In contrast to the wild type, the pdc2Delta strain produced substantial amounts of pyruvate after a glucose pulse. Nevertheless, its overall byproduct formation was ca. 50% lower. The specific rate of glucose consumption after a glucose pulse to pdc2Delta cultures was about 40% lower than in wild-type cultures. This suggests that, at reduced pyruvate-decarboxylase activities, glycolytic flux is controlled by NADH reoxidation. In aerobic, glucose-limited chemostat cultures, the wild type exhibited a mixed respiro-fermentative metabolism at dilution rates above 0.30 h(-1). Below this dilution rate, sugar metabolism was respiratory. At dilution rates up to 0.20 h(-1), growth of the pdc2Delta strain was respiratory and biomass yields were similar to those of wild-type cultures. Above this dilution rate, washout occurred. The low micro(max) of the pdc2Delta strain in glucose-limited chemostat cultures indicates that occurrence of respiro-fermentative metabolism in wild-type cultures is not solely caused by competition of respiration and fermentation for pyruvate. Furthermore, it implies that inactivation of PDC2 is not a viable option for reducing byproduct formation in industrial fermentations.  相似文献   

8.
9.
The phosphoglucose isomerase mutant of the respiratory yeast Kluyveromyces lactis (rag2) is forced to metabolize glucose through the oxidative pentose phosphate pathway and shows an increased respiratory chain activity and reactive oxygen species production. We have proved that the K. lactis rag2 mutant is more resistant to oxidative stress (OS) than the wild type, and higher activities of glutathione reductase (GLR) and catalase contribute to this phenotype. Resistance to OS of the rag2 mutant is reduced when the gene encoding GLR is deleted. The reduction is higher when, in addition, catalase activity is inhibited. In K. lactis, catalase activity is induced by peroxide-mediated OS but GLR is not. We have found that the increase of GLR activity is correlated with that of glucose-6-phosphate dehydrogenase (G6PDH) activity that produces NADPH. G6PDH is positively regulated by an active respiratory chain and GLR plays a role in the reoxidation of the NADPH from the pentose phosphate pathway in these conditions. Cytosolic NADPH is also used by mitochondrial external alternative dehydrogenases. Neither GLR overexpression nor induction of the OS response restores growth on glucose of the rag2 mutant when the mitochondrial reoxidation of cytosolic NADPH is blocked.  相似文献   

10.
The PDC1 gene coding for a pyruvate decarboxylase (PDC; EC 4.1.1.1) was deleted from the Saccharomyces cerevisiae genome. The resulting pdc1(0) mutants were able to grow on glucose and still contained 60 to 70% of the wild-type PDC activity. Two DNA fragments with sequences homologous to that of the PDC1 gene were cloned from the yeast genome. One of the cloned genes (PDC5) was expressed at high rates predominantly in pdc1(0) strains and probably encodes the remaining PDC activity in these strains. Expression from the PDC1 promoter in PDC1 wild-type and pdc1(0) strains was examined by the use of two reporter genes. Deletion of PDC1 led to increased expression of the two reporter genes regardless of whether the fusions were integrated into the genome or present on autonomously replicating plasmids. The results suggested that this effect was due to feedback regulation of the PDC1 promoter-driven expression in S. cerevisiae pdc1(0) strains. The yeast PDC1 gene was expressed in Escherichia coli, leading to an active PDC. This result shows that the PDC1-encoded subunit alone can form an active tetramer without yeast-specific processing steps.  相似文献   

11.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

12.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

13.
14.
In order to find orally active Zn(II) complexes that can treat diabetes mellitus (DM) at low doses, four new Zn(II)-dithiocarbamate complexes with Zn(II)-sulfur coordination bonds were prepared and their in vitro insulinomimetic activity and in vivo anti-diabetic ability were evaluated. Among the Zn(II)-dithiocarbamate complexes, the bis(pyrrolidine-N-dithiocarbamate)zinc(II) (Zn(pdc)(2)) complex was found to be the most effective in terms of inhibiting free fatty acid-release and enhancing glucose-uptake in adipocytes. After oral administration of the Zn(pdc)(2) complex to KK-A(y) mice with obesity and type 2 DM, we observed that the high blood glucose levels in the mice were lowered from approximately 500 mg/dL to 350 mg/dL within 6 days, and the effect was maintained during the administration period. Also, indicators of insulin resistance such as serum insulin, leptin, and triglyceride levels were also reduced compared with those in untreated mice. Moreover, the Zn(pdc)(2) complex improved not only the hypertension in the mice, but also the adiponectin level in the serum. On the basis of the results, the Zn(pdc)(2) complex is proposed to improve hyperglycemia and insulin resistance in type 2 DM animals on daily oral administrations.  相似文献   

15.
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.  相似文献   

16.
Growth of galactose-adapted cells of Streptococcus lactis ML(3) in a medium containing a mixture of glucose, galactose, and lactose was characterized initially by the simultaneous metabolism of glucose and lactose. Galactose was not significantly utilized until the latter sugars had been exhausted from the medium. The addition of glucose or lactose to a culture of S. lactis ML(3) growing exponentially on galactose caused immediate inhibition of galactose utilization and an increase in growth rate, concomitant with the preferential metabolism of the added sugar. Under nongrowing conditions, cells of S. lactis ML(3) grown previously on galactose metabolized the three separate sugars equally rapidly. However, cells suspended in buffer containing a mixture of glucose plus galactose or lactose plus galactose again consumed glucose or lactose preferentially. The rate of galactose metabolism was reduced by approximately 95% in the presence of the inhibitory sugar, but the maximum rate of metabolism was resumed upon exhaustion of glucose or lactose from the system. When presented with a mixture of glucose and lactose, the resting cells metabolized both sugars simultaneously. Lactose, glucose, and a non-metabolizable glucose analog (2-deoxy-d-glucose) prevented the phosphoenolpyruvate-dependent uptake of thiomethyl-beta-d-galactopyranoside (TMG), but the accumulation of TMG, like galactose metabolism, commenced immediately upon exhaustion of the metabolizable sugars from the medium. Growth of galactose-adapted cells of the lactose-defective variant S. lactis 7962 in the triple-sugar medium was characterized by the sequential metabolism of glucose, galactose, and lactose. Growth of S. lactis ML(3) and 7962 in the triple-sugar medium occurred without apparent diauxie, and for each strain the patterns of sequential sugar metabolism under growing and nongrowing conditions were identical. Fine control of the activities of preexisting enzyme systems by catabolite inhibition may afford a satisfactory explanation for the observed sequential utilization of sugars by these two organisms.  相似文献   

17.
18.
The central metabolic pathway of Corynebacterium glutamicum was engineered to produce ethanol. A recombinant strain which expressed the Zymomonas mobilis genes coding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) was constructed. Both genes placed under the control of the C. glutamicum ldhA promoter were expressed at high levels in C. glutamicum, resulting, under oxygen-deprivation conditions, in a significant yield ofethanol from glucose in a process characterized by the absence of cellular growth. Addition of pyruvate in trace amounts to the reaction mixture induced a 2-fold increase in the ethanol production rate. A similar effect was observed when acetaldehyde was added. Disruption of the lactate dehydrogenase (ldhA) gene led to a 3-fold higher ethanol yield than wild type, with no lactate production. Moreover, inactivation of the phosphoenolpyruvate carboxylase (ppc) and ldhA genes revealed a significant amount of ethanol production and a dramatic decrease in succinate without any lactate production, when pyruvate was added. Since the reaction occurred in the absence of cell growth, the ethanol volumetric productivity increased in proportion to cell density of ethanologenic C. glutamicum in a process under oxygen-deprivation conditions. These observations corroborate the view that intracellular NADH concentrations in C. glutamicum are correlated to oxygen-deprived metabolic flows.  相似文献   

19.
The effects of ethanol and acetaldehyde on rat intestinal microvillus membrane integrity and glucose transport function were examined in vitro with purified membrane vesicles. Ethanol could influence glucose transport function by alterations in the conformation of the carrier, the lipid environment surrounding the carrier, or in the transport driving force (Na+ electrochemical gradient). Due to the rapid nature of glucose uptake, transport was assayed with the use of an apparatus that permitted uptake measurements as early as 1 s. Ethanol (340 mm) partially and acetaldehyde (44 mm) completely inhibited concentrative glucose uptake throughout the 1-min time course. Their inhibitory effects were reversible and irreversible, respectively. Kinetic measurements made during the initial rate of uptake (at 2 s) with various concentrations of glucose (0.05–8 mm) showed that ethanol and acetaldehyde both caused a decrease in V. Although ethanol did not substantially alter the transport Km, acetaldehyde increased the Km almost 50%. To determine whether ethanol or acetaldehyde directly interfered with glucose carrier function, uptake was measured in the presence of equilibrated Na+. Only acetaldehyde had a significant inhibitory effect under these conditions. Membrane permeability, as determined by efflux of preloaded 6-carboxyfluorescein dye, increased upon exposure of the vesicles to ethanol or acetaldehyde. Membrane fluidity measurements by fluorescence polarization showed that only acetaldehyde had a significant fluidizing effect. These results indicate that ethanol and acetaldehyde acted to perturb membrane integrity and inhibited glucose uptake indirectly by allowing the Na+ gradient to dissipate. Acetaldehyde, which had a stronger inhibitory effect than ethanol, appeared also to directly inhibit carrier function.  相似文献   

20.
Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号