首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
细菌群体感应调控多样性及群体感应淬灭   总被引:3,自引:0,他引:3  
群体感应(Quorum sensing, QS)是细菌通过信号分子分泌、识别,从而调控基因水平转移、毒力因子分泌、芽孢产生及生物膜形成等群体行为的细胞交流机制。干扰信号分子的分泌、识别,可以阻断群体感应,实现群体淬灭。群体淬灭(Quorum quenching, QQ)是目前致病性控制、致腐性预防以及生物膜污染削减的重要策略之一。本文以群体感应信号分泌-识别-响应为主线,将群体感应分为等级、平行及竞争型三类调控方式,并对其特征进行了详细阐述;同时,探讨了信号分子类似物、信号分子降解酶剂、信号受体激活剂/抑制剂等策略在不同调控方式淬灭中的适用性;最后,对群体感应调控及淬灭进行了展望,以期为丰富细菌群体感应认知、促进群体淬灭应用提供参考。  相似文献   

2.
3.
Bacteria receive signals from diverse members of their biotic environment. They sense their own species through the process of quorum sensing, which detects the density of bacterial cells and regulates functions such as bioluminescence, virulence, and competence. Bacteria also respond to the presence of other microorganisms and eukaryotic hosts. Most studies of microbial communication focus on signaling between the microbe and one other organism for empirical simplicity and because few experimental systems offer the opportunity to study communication among various types of organisms. But in the real biological world, microorganisms must carry on multiple molecular conversations simultaneously between diverse organisms, thereby constructing communication networks. We propose that biocontrol of plant disease, the process of suppressing disease through application of a microorganism, offers a model for the study of communication among multiple organisms. Successful biocontrol requires the sending and receiving of signals between the biocontrol agent and the pathogen, plant host, and microbial community surrounding the host. We are using Bacillus cereus, a biocontrol agent, and the organisms it must interact with, to dissect a communication network. This system offers an excellent starting point for study because its members are defined and well studied. An understanding of signaling in the B. cereus biocontrol system may provide a model for network communication among organisms that share a habitat and provide a new angle of analysis for understanding the interconnections that define communities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.  相似文献   

5.
Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.  相似文献   

6.
The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities.  相似文献   

7.
8.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   

9.
The discovery of antibiotics early in the past century marked the beginning of active control and prevention of infectious microbial diseases. However, extensive use of antibiotics has also unavoidably resulted in the emergence of ‘superbugs’ that resist conventional antibiotics. The finding that many pathogens rely on cell-to-cell communication mechanisms, known as quorum sensing, to synchronize microbial activities essential for infection and survival in the host suggests a promising disease control strategy, i.e. quenching microbial quorum sensing or in short, quorum quenching. Work over the past few years has demonstrated that quorum-quenching mechanisms are widely conserved in many prokaryotic and eukaryotic organisms. These naturally occurring quorum-quenching mechanisms appear to play important roles in microbe–microbe and pathogen–host interactions and have been used, or served as lead compounds, in developing and formulating a new generation of antimicrobials. Characterization of the crystal structures of several types of quorum-quenching enzymes has provided valuable information to elucidate the catalytic mechanisms, as well as clues for future protein tailoring and molecular improvement. The discovery of quorum-sensing signal degradation enzymes in mammalian species represents a new milestone in quorum sensing and quorum quenching research. The finding highlights the importance of investigating their roles in host innate defence against infectious diseases and to determine the factors influencing their in vivo concentrations and catalytic activities.  相似文献   

10.
群体感应与微生物耐药性   总被引:1,自引:0,他引:1  
微生物耐药性已成为全球关注的严重问题,其演化机制和调控机理也已成为研究热点。近年来的研究发现,一些微生物耐药性机制受到群体感应系统的调控。群体感应是一种在微生物界广泛存在并与菌体密度关联的细胞-细胞间的通讯系统。高密度的菌落群体能够产生足够数量的小分子信号,激活下游包括致病毒力和耐药性机制在内的多种细胞进程,耐受抗生素并且危害寄主。本文结合国内外最新的研究进展,对微生物群体感应系统的研究现状进行了概括性介绍,重点阐述了群体感应系统对微生物耐药性机制的调控作用,如微生物生物被膜形成和药物外排泵调控等方面的作用,并探讨了利用群体淬灭控制微生物耐药性的新策略。  相似文献   

11.
Surveying microbial diversity and function is accomplished by combining complementary molecular tools. Among them, metagenomics is a PCR free approach that contains all genetic information from microbial assemblages and is today performed at a relatively large scale and reasonable cost, mostly based on very short reads. Here, we investigated the potential of metagenomics to provide taxonomic reports of marine microbial eukaryotes. We prepared a curated database with reference sequences of the V4 region of 18S rDNA clustered at 97% similarity and used this database to extract and classify metagenomic reads. More than half of them were unambiguously affiliated to a unique reference whilst the rest could be assigned to a given taxonomic group. The overall diversity reported by metagenomics was similar to that obtained by amplicon sequencing of the V4 and V9 regions of the 18S rRNA gene, although either one or both of these amplicon surveys performed poorly for groups like Excavata, Amoebozoa, Fungi and Haptophyta. We then studied the diversity of picoeukaryotes and nanoeukaryotes using 91 metagenomes from surface down to bathypelagic layers in different oceans, unveiling a clear taxonomic separation between size fractions and depth layers. Finally, we retrieved long rDNA sequences from assembled metagenomes that improved phylogenetic reconstructions of particular groups. Overall, this study shows metagenomics as an excellent resource for taxonomic exploration of marine microbial eukaryotes.  相似文献   

12.
随着世界范围内流行性疾病以及我国空气雾霾事件的不断发生,空气生物性污染的研究开始受到高度重视,其研究方法也随着分子生物学技术的快速发展而不断更新,由早期以生化技术为基础的研究方法转变为以现代分子生物学技术为基础的研究方法。综述了空气微生物群落多样性解析方法从培养到非培养的发展过程,包括培养技术法、BIOLOG技术、生物标记法、基因指纹图谱技术、核酸杂交技术、实时荧光定量PCR、空气微生物宏基因组学及基因芯片技术,阐述了这些技术的基本原理,比较了各种技术的优缺点并重点介绍了它们在空气微生物群落多样性研究中的应用概况,最后展望了空气微生物学研究的发展方向。  相似文献   

13.
The class Kinetoplastea encompasses both free-living and parasitic species from awide range of hosts. Several representatives of this group are responsible for severehuman diseases and for economic losses in agriculture and livestock. While this groupencompasses over 30 genera, most of the available information has been derived fromthe vertebrate pathogenic genera LeishmaniaandTrypanosoma. Recent studies of the previously neglected groups ofKinetoplastea indicated that the actual diversity is much higher than previouslythought. This article discusses the known segment of kinetoplastid diversity and howgene-directed Sanger sequencing and next-generation sequencing methods can help todeepen our knowledge of these interesting protists.  相似文献   

14.
Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as ‘the invisible regulators’ of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro‐ and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in ‘macro’‐landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro‐ and macroecological processes and expand our knowledge of species’ distributions, adaptive mechanisms and species’ interactions in changing environments.  相似文献   

15.
环境微生物群落结构与功能多样性研究方法   总被引:6,自引:0,他引:6  
微生物群落的结构及群落内种间相互作用是影响其生态功能的决定性因素。尽管微生物群落是地球生物化学循环的主要驱动者,但是由于传统的微生物培养方法只能分离约1%10%的环境微生物,对复杂的环境微生物群落结构和功能多样性了解甚少。元基因组学、单细胞分析和群落遗传学等方法的出现,及其与微生物学的交叉融合,使得人们能够从微生物群落组成、物种功能、种间相互作用和预测模型等方面分析微生物群落。重点综述了元基因组学、单细胞分析和群落遗传学等方法及其在环境微生物群落结构和功能多样性中的应用进展。  相似文献   

16.
The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.  相似文献   

17.
The earlier published and new experimental data are summarized on the properties of the genes encoding the membrane proteins of the DMT family (RhtA (YbiF), EamA (YdeD), YijE, YddG, YedA, PecM, eukaryotic nucleotide sugar, triose phosphate/phosphate, and hexose phosphate transporters), the RhtB/LysE family (RhtB, RhtC, LeuE, YahN, EamB (YfiK), ArgO (YggA), CmaU), as well as some other families (YicM, YdhC, YdeAB, YdhE (NorE)). These proteins are involved in the export of amino acids, purines, and other metabolites from the cell. The expression of most of the genes encoding these proteins is not induced by the substrates they transport but is controlled by the global regulation systems, such as the Lrp protein, and activated by the signal compounds involved in the intracellular communication. The level of expression, assessed in experiments on translational fusion of the corresponding bacterial genes with the β-galactosidase gene, depends on the growth phase of the bacterial culture, composition of the medium, and some stress factors, such as pH, osmolarity or decreased aeration. The efflux of normal cell metabolites is assumed to be the natural function of these proteins. This function may play a role in density-dependent behavior of cell populations (quorum sensing). It may have been enhanced in the course of evolution via specialization of these proteins in the efflux of compounds derived from metabolic intermediates and adjusted to the role of transmitters.  相似文献   

18.
在大多数致病菌中都存在群体感应系统,而群体感应抑制剂就是以此系统作为靶点,在不影响细菌生长的情况下阻断细菌生物被膜形成或抑制毒力基因表达,不易导致耐药性的产生,是一种理想的抗菌增效剂。分子对接作为虚拟筛选技术之一,其目标具体、效率高、成本低,是药物研发的重要手段。本文重点介绍了分子对接的主要模块及其在研究群体感应抑制剂中的进展。  相似文献   

19.
罗放  俞易  陈铭哲  杨以清  魏垠 《生物工程学报》2018,34(12):1895-1905
外源基因的表达及其对细菌种群的影响对于群体感应系统和合成生物学产业的研究具有重要意义。然而,人们对于表达外源蛋白的细菌本身的行为模式仍然知之甚少。为了研究菌落生长和外源基因表达的过程究竟受到哪些因素的影响,文中测量了受Lux类受体调控的外源基因在N-酰基高丝氨酸内酯 (N-acyl homoserine lactone,N-AHL) 信号分子诱导下的表达,并模拟了其对细菌种群动态的影响。文中建立了一个假设性的数学模型,对信号分子诱导表达下细菌种群生长受影响的现象进行了分析。先前的研究通常将细菌种群生长受群体感应系统影响的现象归咎于合成群体感应信号分子的消耗与N-AHL信号分子的毒性,文中提供了对于这种生存压力的另一种可能的解释。  相似文献   

20.
At the genome level, microorganisms are highly adaptable both in terms of allele and gene composition. Such heritable traits emerge in response to different environmental niches and can have a profound influence on microbial community dynamics. As a consequence, any individual genome or population will contain merely a fraction of the total genetic diversity of any operationally defined “species”, whose ecological potential can thus be only fully understood by studying all of their genomes and the genes therein. This concept, known as the pangenome, is valuable for studying microbial ecology and evolution, as it partitions genomes into core (present in all the genomes from a species, and responsible for housekeeping and species-level niche adaptation among others) and accessory regions (present only in some, and responsible for intra-species differentiation). Here we present SuperPang, an algorithm producing pangenome assemblies from a set of input genomes of varying quality, including metagenome-assembled genomes (MAGs). SuperPang runs in linear time and its results are complete, non-redundant, preserve gene ordering and contain both coding and non-coding regions. Our approach provides a modular view of the pangenome, identifying operons and genomic islands, and allowing to track their prevalence in different populations. We illustrate this by analysing intra-species diversity in Polynucleobacter, a bacterial genus ubiquitous in freshwater ecosystems, characterized by their streamlined genomes and their ecological versatility. We show how SuperPang facilitates the simultaneous analysis of allelic and gene content variation under different environmental pressures, allowing us to study the drivers of microbial diversification at unprecedented resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号