首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance of lactosylceramide (LacCer; Gal beta 1-4Glc beta 1-1Cer) in human polymorphonuclear neutrophils (PMN) (about 10(9) molecules/cell) seemed inconsistent with an exclusive plasma membrane LacCer localization in these cells. Therefore, the distribution of LacCer between plasma membrane and intracellular compartments was analyzed. Binding of 125I-labeled monoclonal anti-LacCer antibody (T5A7) to intact cells indicated that only 0.1-0.2% of total LacCer was accessible to antibody. Chemical and immunochemical comparisons of organic extracts prepared from PMN cytoplasts (i.e. PMN depleted of nucleus and granules) and intact PMN demonstrated that less than 25% of PMN LacCer was plasma membrane-derived. Simultaneous particle volume and surface staining analyses suggested that selective LacCer loss from cytoplasts could not explain this result. Intracellular LacCer was demonstrated by intense staining of PMN frozen thin sections with T5A7 in indirect immunofluorescence tests. Two-color fluorescence studies using frozen thin sections of neutrophils previously surface-stained with saturating concentrations of T5A7 indicated that this staining did not reflect section artifact. Organic extracts of density gradient-fractionated PMN cavitates were analyzed by radioimmunoassay to determine whether LacCer associates with known populations of PMN granules. Antigen predominantly cosedimented with enzyme markers for primary and secondary granules rather than with plasma membrane marker. Thin layer chromatography of glycolipids extracted from these density gradient fractions identified LacCer as the only antigenic species and demonstrated that chemically detectable LacCer was primarily in granule-enriched rather than plasma membrane fractions. These data indicate that human PMN LacCer is predominantly intracellular and that the glycolipid may be a constituent of PMN lysosomal granules.  相似文献   

2.
We previously found that phosphatidylglucoside (PtdGlc), a novel glycolipid expressed in HL60 cells, plays a role in forming signaling microdomains involved in cellular differentiation. Because cells contain minute levels of PtdGlc, pure PtdGlc is very difficult to isolate. Thus, its complete structure has never been assessed. To aid in analyzing PtdGlc, we generated a PtdGlc-specific monoclonal antibody, DIM21, by immunizing mice with detergent-insoluble membranes isolated from HL60 cells [Yamazaki, Y., et al. (2006) J. Immunol. Methods 311, 106-116]. DIM21 immunostaining of murine CNS tissues revealed stage- and cell type-specific localization of the DIM21 antigen during development, with especially high levels of expression in radial glia/astroglia. DIM21 immunostained cultured hippocampal astroglia in a punctate fashion. To characterize the structure of PtdGlc, we isolated DIM21 antigen from fetal brains. Using successive column chromatography, we purified two previously unrecognized glycolipids, PGX-1 and PGX-2, from embryonic day 21 rat brains. DIM21 reacted more strongly to PGX-2 than to PGX-1. Structural analyses with 600 MHz (1)H NMR, FT-ICR mass spectrometry, and GC revealed that PGX-1 is phosphatidyl beta-d-(6-O-acetyl)glucopyranoside and PGX-2 is phosphatidyl beta-d-glucopyranoside. The yields of PGX-1 and PGX-2 were approximately 250 +/- 150 and 440 +/- 270 nmol/g of dried brains, respectively. Surprisingly, both glycolipids were composed exclusively of C18:0 at the C1 position and C20:0 at the C2 position of the glycerol backbone. This saturated fatty acyl chain composition comprising a single molecular species rarely occurs in known mammalian lipids and provides a molecular basis for why PtdGlc resides in raftlike lipid microdomains.  相似文献   

3.
The expression and phosphorylation state of the vasodilator-stimulated phosphoprotein (VASP), a membrane-associated focal adhesion protein, was investigated in human neutrophils. Adhesion and spreading of neutrophils induced the rapid phosphorylation of VASP. The phosphorylation of VASP was dependent on cell spreading, as VASP was expressed as a dephosphorylated protein in round adherent cells and was phosphorylated at the onset of changes in cell shape from round to spread cells. Immunofluorescence microscopy demonstrated that VASP was localized at the cell cortex in round cells and redistributed to focal adhesions at the ventral surface of the cell body during cell spreading. Dual labeling of spread cells indicated that VASP was colocalized with F-actin in filopodia and in focal adhesions, suggesting that the phosphorylation of VASP during cell spreading may be involved in focal adhesion complex organization and actin dynamics. VASP is a prominent substrate for both cGMP-dependent protein kinase (cGK) and cAMP-dependent protein kinase. Evidence suggested that cGK regulated neutrophil spreading, as both VASP phosphorylation and neutrophil spreading were inhibited by Rp-8-pCPT-cGMPS (cGK inhibitor), but not KT5720 (cAMP-dependent protein kinase inhibitor). In contrast, neutrophil spreading was accelerated when cGMP levels were elevated with 8-Br-cGMP, a direct activator of cGK. Furthermore, the same conditions that lead to VASP phosphorylation during neutrophil adherence and spreading induced significant elevations of cGMP in neutrophils. These results indicate that cGMP/cGK signal transduction is required for neutrophil spreading, and that VASP is a target for cGK regulation.  相似文献   

4.
Because of its dual roles in acute toxicity and in therapeutic application in cancer treatment, arsenic has recently attracted a renewed attention. In this study, we report NaAsO(2)-induced signal cascades from the cell surface to the nucleus of murine thymic T lymphocytes that involve membrane rafts as an initial signal transducer. NaAsO(2) induced apoptosis through fragmentation of DNA, activation of caspase, and reciprocal regulation of Bcl-2/Bax with the concomitant reduction of membrane potential. We demonstrated that NaAsO(2)-induced caspase activation is dependent on curcumin-sensitive c-Jun amino-terminal kinase and barely dependent on SB203580-sensitive p38 kinase or PD98059-sensitive extracellular signal-regulated kinase. Additionally, staurosporine, which severely inhibited the activation of mitogen-activated protein (MAP) family kinases and c-Jun, partially blocked the NaAsO(2)-mediated signal for poly(ADP-ribose) polymerase (PARP) degradation. Potentially as the initial cell surface event for intracellular signaling, NaAsO(2) induced aggregation of GPI-anchored protein Thy-1 and superoxide production. This Thy-1 aggregation and subsequent activation of MAP family kinase and c-Jun and the degradation of PARP induced by NaAsO(2) were all inhibited by DTT, suggesting the requirement of interaction between arsenic and protein sulfhydryl groups for those effects. beta cyclodextrin, which sequestrates cholesterol from the membrane rafts, inhibited NaAsO(2)-induced activation of protein tyrosine kinases and MAP family kinases, degradation of PARP, and production of superoxide. In addition, beta cyclodextrin dispersed NaAsO(2)-induced Thy-1 clustering. These results suggest that a membrane raft integrity-dependent cell surface event is a prerequisite for NaAsO(2)-induced protein tyrosine kinase/c-Jun amino-terminal kinase activation, superoxide production, and downstream caspase activation.  相似文献   

5.
A novel immunosuppressant, FTY720, that was purified from cultures of Isaria sinclairii has been shown to cause apoptosis of lymphocytes, but its biochemical and molecular mechanisms are largely unknown. In this study, we investigated the signal transduction of FTY720-induced apoptosis in comparison with the Fas-induced apoptosis. Although FTY720 induced nuclear and membrane damages in a dose-dependent manner, nuclear damage, but not membrane damage, was suppressed by the caspase-3 inhibitor, DEVD-FMK. It blocked both the nuclear and membrane damages that were induced by the anti-Fas antibody. Experiments using enucleated cytoplasts also demonstrated that membrane damage was induced by FTY720. However, the ones that were induced by the anti-Fas antibody were not blocked by DEVD-FMK. Exogenously-added sphingolipids partially suppressed the FTY720-induced membrane damage. These results suggest that FTY720 induces membrane damage through the caspase-3-independent pathway that is modulated by sphingolipids.  相似文献   

6.
The current study was undertaken to evaluate the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and cyclic AMP (cAMP) signaling interaction on human neutrophil apoptosis, either occurring spontaneously or induced by Fas antigen activation. Results show that GM-CSF, dibutyryl cAMP (a cAMP analog) and forskolin (an adenylate cyclase activator) are all able to suppress spontaneous neutrophil cell death. Of note however, when GM-CSF is used in combination with cAMP-elevating agents, an additive effect on neutrophil survival is observed with dibutyryl cAMP only, whereas supplementation of cell cultures with GM-CSF and forskolin results in a progressive reduction of antiapoptotic effects exerted by the single compounds. Moreover, although dibutyryl cAMP and forskolin do not affect Fas-triggered apoptotic events, they are still able to modulate the GM-CSF capacity to prolong neutrophil survival following anti-Fas IgM cell challenge, with effects similar to those respectively exerted on spontaneous neutrophil apoptosis. The data indicate that GM-CSF may negatively modulate the cAMP-mediated antiapoptotic pathway in human neutrophils, likely via the inhibition of adenylate cyclase activity. This would prevent an abnormal neutrophil survival as a result of cAMP signaling stimulation, which provides a novel insight into the role of GM-CSF as a physiological regulator of myeloid cell turnover.  相似文献   

7.
Cross-linking MHC class II molecules human leukocyte antigen (HLA-DR) on the surface of THP-1 cells was found to induce their entry into the glycolipid-enriched membrane fraction of the plasma membrane. At the cellular level, this resulted in the synergistic co-aggregation of class II with cholera toxin, a marker of membrane rafts. The accompanying induction of intracellular protein tyrosine phosphorylation could be inhibited by treating cells with methyl-beta-cyclodextrin, a drug that chelates membrane cholesterol and thereby disperses membrane rafts. Signaling could also be inhibited by treating cells with the Src-family kinase inhibitor PP1. Together, these results show that the induced association of class II molecules with membrane rafts can contribute to their aggregation on the cell surface and mediate an association with intracellular protein-tyrosine kinases.  相似文献   

8.
Depolarisation of the plasma membrane has been shown to be actively regulated during lymphocyte-apoptosis. Here, we present data about anti-Fas and As2O3 induced depolarisation of myeloid U-937 cells. Anti-Fas but not As2O3-induced depolarisation was significantly dependent on caspase-activation. Na+-fluxes contributed to the depolarisation in early stages of As2O3-induced apoptosis, whereas the membrane potential in late stages depended on Cl- -fluxes. Cl- -channels also played an important role in the induction of cell shrinkage in As2O3-induced apoptosis. However, none of these ions contributed significantly to anti-Fas induced depolarisation. This indicates the existence of different mechanisms for apoptotic plasma membrane depolarisation within one cell type.  相似文献   

9.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

10.
Lactosylceramide [LacCer; β-Gal-(1-4)-β-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[3H]LacCer-(N3) and C24-[3H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[3H]LacCer-(N3), but not C18-[3H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[3H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[3H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.  相似文献   

11.
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.  相似文献   

12.
We investigated the expression of a novel glycophospholipid, phosphatidylglucoside (PtdGlc), in adult mouse brains. Immunohistochemical analysis with DIM21 antibody, a monoclonal anti-PtdGlc antibody, revealed robust PtdGlc staining in the two primary neurogenic regions of the adult rodent brain, the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone of the dentate gyrus. Intriguingly, the staining pattern of PtdGlc appeared to overlap that of glial fibrillary acidic protein, an adult neural stem cell marker in these regions. Further immunohistochemical analysis revealed that PtdGlc expression on the cell membranes of adult SVZ neural stem cells significantly overlapped with other proposed adult neural stem cell markers. Moreover, PtdGlc(+) cells isolated from adult mouse SVZs by fluorescence-activated cell sorting with anti-PtdGlc antibody efficiently generated neurospheres in cell culture. These cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, directly demonstrating that PtdGlc-expressing cells possessed multipotency. Our data suggest that PtdGlc could be a useful adult stem cell marker.  相似文献   

13.
Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.  相似文献   

14.
Regulation of neutrophil apoptosis plays a critical role in the inflammatory response. Inflammation has previously been shown to increase levels of extracellular β-nicotinamide adenine dinucleotide (NAD+). The present study demonstrates that extracellular NAD+ at concentrations found in the inflamed tissues profoundly delays spontaneous apoptosis of human neutrophils as was evidenced by inhibition of phosphatidylserine (PS) exposure, DNA fragmentation and caspase-3 activation. The effect was abrogated by NF157, an antagonist of P2Y11 receptor, and was pertussis toxin-insensitive. The NAD+-mediated delay of neutrophil apoptosis was reversed by 2′,5′-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Blocking of NAD+-induced influx of extracellular Ca2+ with EGTA did not abolish the pro-survival effect of NAD+. Extracellular NAD+ inhibited proteasome-dependent degradation of Mcl-1 upstream of caspase activation and, furthermore, suppressed Bax translocation to the mitochondria and attenuated both dissipation of mitochondrial transmembrane potential (ΔΨm) and cytochrome c release from the mitochondria into the cytosol. Finally, we found that extracellular NAD+ inhibited spontaneous activation of caspase-9, but not caspase-8, and the pro-survival effect of extracellular NAD+ was abrogated by the inhibitor of caspase-9, but not by the inhibitor of caspase-8. Together, these results demonstrate that extracellular NAD+ inhibits neutrophil apoptosis via P2Y11 receptor and cAMP/PKA pathway by regulating Mcl-1 level, Bax targeting to the mitochondria and mitochondrial apoptotic pathway. Thus, extracellular NAD+ acts as a neutrophil survival factor that can contribute to prolonged neutrophil lifespan in inflammatory response.  相似文献   

15.
Macrophage-induced neutrophil apoptosis   总被引:1,自引:0,他引:1  
Macrophages (Mphi) contribute to the resolution of early inflammation by recognizing and ingesting apoptotic polymorphonuclear neutrophils (PMN). In addition, experiments reported here demonstrated that Mphi can actively induce PMN apoptosis. Coculture of cells from 2- or 5-day-old wounds in rats, or of Mphi purified from such preparations, with PMN-rich wound cell populations obtained 1 day after wounding increased PMN apoptosis by >3-fold. Neither resident- nor Proprionibacterium acnes-elicited peritoneal Mphi-induced PMN apoptosis. Apoptosis was not mediated by a soluble factor and required E:T contact. Fixed wound-Mphi and membrane isolates from viable Mphi were as effective as intact cells in inducing PMN apoptosis. Mphi-induced apoptosis was inhibited by peptide Arg-Gly-Asp-Ser, anti-beta3 (CD61) Ab, CD36 peptide, or anti-TNF-alpha Ab. Soluble TNF-alpha did not induce PMN apoptosis. In additional studies, K562 cells (negative for beta3, TNF-alpha, and Fas ligand) transfected to express either alphavbeta3 integrin, an uncleavable membrane form of TNF-alpha, or both were used in cocultures with wound PMN. Only the double transfectants were able to induce PMN apoptosis, an effect inhibited by anti-beta3 (CD61) or anti-TNF-alpha Abs. These results demonstrate that wound Mphi induce PMN apoptosis through a constitutive effector mechanism requiring both intercellular binding through integrin-ligand interactions and membrane-bound TNF-alpha.  相似文献   

16.
Neutrophils are a vital component of the early acute inflammatory response, but can cause profound tissue damage when activated to excess or prevented from undergoing apoptosis. However, much remains unknown about the intracellular signaling pathways regulating neutrophil activity. The structurally diverse neutrophil-priming agents platelet-activating factor, TNF-alpha, and the substance P analog [D-Arg(6), D-Trp(7,9),N(me)Phe(8)]-substance P(6-11) (SP-G) stimulated a rapid increase in sphingosine kinase activity in freshly isolated human neutrophils. This activity was blocked by preincubation with the sphingosine kinase inhibitor N,N-dimethylsphingosine (DMS). DMS also inhibited the increase in intracellular calcium concentration stimulated by platelet-activating factor, fMLP, and SP-G. This suggests that the increase in intracellular calcium concentration by these agents is dependent on sphingosine kinase activation and the generation of sphingosine-1-phosphate. Changes in cell polarization and the augmentation of the fMLP-induced superoxide anion generation, by all priming agents were also inhibited by DMS, while only the superoxide anion release was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Moreover, SP-G and GM-CSF inhibited constitutive neutrophil apoptosis which was completely blocked by DMS. These results suggest a novel role for sphingosine kinase in the regulation of neutrophil priming.  相似文献   

17.
Herein, we report the chemical syntheses of a series of phosphatidyl-beta-D-glucoside (PtdGlc) analogues, including 6-O-Ac, sn-2-O-Me, phosphorothioate as well as phosphatidylgalactoside and -mannoside derivatives. In the key step, beta-glycosyl H-phosphonate was condensed with enantiomerically pure diacylglycerol. Comparison of spectroscopic data with mono-acetylated PtdGlc from natural source confirmed the presence of an acetyl moiety at position 6. Furthermore, the reactivity of PtdGlc and its analogues toward monoclonal antibody 'DIM21' (MAb DIM21) was evaluated, revealing the crucial structural antigen features for successful MAb DIM21 binding.  相似文献   

18.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

19.
Formation of domains by the membrane binding motifs of caveolin and src were studied in large unilamellar vesicles using fluorescence digital imaging microscopy. Caveolin, a major structural protein of caveolae, contains a scaffolding region (residues 82-101) that contributes to the binding of the protein to the plasma membrane. A caveolin peptide (82-101) corresponding to this scaffolding region induced the formation of membrane domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Cholesterol, another predominant component of caveolae, was also enriched in these domains. Caveolae also contain many different signaling molecules including src family tyrosine kinases. Src proteins bind to the plasma membrane via a N-terminal myristate chain and a cluster of basic residues that can interact electrostatically with negatively charged lipids. A peptide corresponding to the src membrane binding motifs (residues myr-2-19) sequestered acidic lipids into lateral membrane domains. Both the src and the caveolin peptides colocalized together with acidic lipids in the domains. Control experiments show the domains are not the result of vesicle aggregation. Two-photon fluorescence correlation spectroscopy experiments suggest diffusion in the domains was slower, but the domains were dynamic. Protein kinase C phosphorylated src in its N-terminal membrane binding region; however, the caveolin scaffolding peptide inhibited this activity. Consequently, protein-induced membrane domains may affect cell signaling by organizing signal transduction components within the membrane and changing reaction rates.  相似文献   

20.
Regulation of death receptor-mediated apoptosis is incompletely understood. Previous studies have demonstrated that phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, inhibits Fas (CD95)-mediated apoptosis in Jurkat (type II) cells but not SKW6.4 (type I) cells. In this study, we demonstrated that PMA also protects Jurkat cells from apoptosis induced by tumor necrosis factor-alpha and the tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). Interestingly, PMA failed to protect Jurkat cells from apoptosis induced by other agents, including etoposide, camptothecin, and gamma-irradiation. Analysis of the initial events induced by agonistic anti-Fas antibodies revealed that PMA inhibited Fas binding to Fas-associated polypeptide with death domain (FADD) in Jurkat cells but not in SKW6.4 cells. Although the protein kinase inhibitor bisindoylmaleimide VIII increased apoptosis induced by agonistic anti-Fas antibody, tumor necrosis factor-alpha, and TRAIL, these effects were not observed with the protein kinase C inhibitor H7 and were not associated with increased FADD recruitment to Fas. These results indicate that PMA inhibits death signaling induced by a number of discrete receptors and suggest that the effects are mediated at the level of receptor-mediated adaptor molecule recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号