首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously showed that naive CD4+ Th cells acquire peptide-MHC class I (pMHC I) and costimulatory molecules from OVA-pulsed dendritic cells (DC(OVA)), and act as Th-APCs in stimulation of CD8+ CTL responses. In this study, we further demonstrated that naive CD8+ cytotoxic T (Tc) cells also acquire pMHC I and costimulatory CD54 and CD80 molecules by DC(OVA) stimulation, and act as Tc-APC. These Tc-APC can play both negative and positive modulations in antitumor immune responses by eliminating DC(OVA) and neighboring Tc-APC, and stimulating OVA-specific CD8+ central memory T responses and antitumor immunity. Interestingly, the stimulatory effect of Tc-APC is mediated via its IL-2 secretion and acquired CD80 costimulation, and is specifically targeted to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. These principles could be applied to not only antitumor immunity, but also other immune disorders (e.g., autoimmunity).  相似文献   

2.
MHC class I molecules are highly polymorphic within populations. This diversity is thought to be the result of selective maintenance of new class I alleles formed by gene conversion. It has been proposed that rare alleles are maintained by their ability to confer resistance to common pathogens. Investigation has focused on differences in the presentation of foreign Ags by class I alleles, but the majority of peptides presented by class I molecules are self peptides used in shaping the naive T cell repertoire. We propose that the key substrate for the natural selection of class I gene conversion variants is the diversity in immune potential formed by new alleles. We show that T cells compete with each other for niches in the thymus and spleen during development, and that competition between different clones is dramatically affected by class I mutations. We also show that peripheral naive T cells proliferate preferentially in the presence of the class I variant that directed T cell development. The data argue that class I gene conversion mutations dramatically affect both the development and the maintenance of the naive CD8 T cell repertoire.  相似文献   

3.
The role of CD4+ T cells in promoting CD8+ T cell effector activity in response to transplant Ags in vivo has not been reported. We used a hepatocellular allograft model known to initiate both CD4-dependent and CD4-independent rejection responses to investigate the contribution of CD4+ T cells to the development, function, and persistence of allospecific CD8+ T cell effectors in vivo. Complete MHC-mismatched hepatocellular allografts were transplanted into C57BL/6 (CD4-sufficient) or CD4 knockout (CD4-deficient) hosts. The development of in vivo allospecific cytotoxicity was determined by clearance of CFSE-labeled target cells. CD8+ T cell cytotoxic effector activity was enhanced in response to allogeneic hepatocellular grafts with a greater magnitude of allocytotoxicity and a prolonged persistence of CTL effector activity in CD4-sufficient hosts compared with CD4-deficient hosts. Cytolytic activity was mediated by CD8+ T cells in both recipient groups. In response to a second hepatocyte transplant, rejection kinetics were enhanced in both CD4-sufficient and CD4-deficient hepatocyte recipients. However, only CD4-sufficient hosts developed recall CTL responses with an augmented magnitude and persistence of allocytotoxicity in comparison with primary CTL responses. These studies show important functional differences between alloreactive CD8+ T cell cytolytic effectors that mature in vivo in the presence or absence of CD4+ T cells.  相似文献   

4.
Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the TCR allow pMHCI to be bound simultaneously by both molecules. Even before it was established that the TCR recognized pMHCI, it was shown that CTL exhibit clonal heterogeneity in their ability to activate in the presence of anti-CD8 Abs. These Ab-based studies have since been interpreted in the context of the interaction between pMHCI and CD8 and have recently been extended to show that anti-CD8 Ab can affect the cell surface binding of multimerized pMHCI Ags. In this study, we examine the role of CD8 further using point-mutated pMHCI Ag and show that anti-CD8 Abs can either enhance or inhibit the activation of CTL and the stable cell surface binding of multimerized pMHCI, regardless of whether there is a pMHCI/CD8 interaction. We further demonstrate that multimerized pMHCI Ag can recruit CD8 in the absence of a pMHCI/CD8 interaction and that anti-CD8 Abs can generate an intracellular activation signal resulting in CTL effector function. These results question many previous assumptions as to how anti-CD8 Abs must function and indicate that CD8 has multiple roles in CTL activation that are not necessarily dependent on an interaction with pMHCI.  相似文献   

5.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

6.

Background

We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma.

Methodology and Principal Findings

To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision.

Conclusions and Significance

This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer.  相似文献   

7.
T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.  相似文献   

8.
Cross-linking of CD8 and HLA class I molecules with appropriate monoclonal antibodies (mAb) and goat anti-mouse Ig (GaMIg) antibody resulted in a marked proliferation of resting human CD8 cells in the presence of interleukin-2 (IL-2). These cells also expressed IL-2 receptor (IL-2R), transferrin receptor, HLA-DR and -DQ antigens. Activation of the cross-linked CD8 cells is apparently independent of accessory monocytes. Various anti-CD8 and anti-HLA class I mAb recognizing nonpolymorphic antigenic determinants were examined for the efficacy of activating CD8 cells. Among mAb specific for HLA class I molecules, PA2.6, MB40.5, BB7.7, A1.4, and W6/32 mAb markedly stimulated the proliferation of cross-linked CD8 cells, whereas BBM.1, Q1/28, and HC10 mAb were found inactive. Footprinting analysis of HLA class I molecules suggested that the activity of these anti-HLA class I mAb appeared to be related to the corresponding peptides they protect from enzymatic digestion. In contrast to the anti-HLA class I mAb, all anti-CD8 mAb examined (C8, OKT8A, and anti-Leu-2a) induced the proliferation of CD8-HLA class I cross-linked cells with similar efficacy. These results suggest that physical interaction between CD8 and at least one specific region of HLA class I molecules can trigger the activation of resting human CD8 cells.  相似文献   

9.
In this work, we have studied the role of the MHC class Ib molecules in the selection and maintenance of CD8(+) T splenocytes. We have compared the CD8(+) T cell repertoires of wild-type, H-2K-deficient, H-2D-deficient, or double knockout C57BL/6 mice. We show that the different CD8(+) repertoires, selected either by class Ia and class Ib or by class Ib molecules only, use the various V alpha (AV) and V beta (BV) rearrangements in the same proportion and without biases in the CDR3 size distribution. Furthermore, we have estimated the size of the BV repertoire in the four different strains of mice. Interestingly, we have found that the BV repertoire size is proportional to the overall number of CD8(+) splenocytes. This observation implies that BV diversity is positively correlated with the number of CD8(+) cells, even when the number of CD8(+) splenocytes is dramatically reduced (90% in the double knockout mice).  相似文献   

10.
Fully functional memory CD8 T cells in the absence of CD4 T cells   总被引:5,自引:0,他引:5  
The role of CD4 T cells in providing help to CD8 T cells in primary and secondary responses to infection remains controversial. Using recombinant strains of virus and bacteria expressing the same Ag, we determined the requirement for CD4 T cells in endogenous CD8 T cell responses to infection with vesicular stomatitis virus and Listeria monocytogenes (LM). Depletion of CD4 T cells had no effect on the frequency of primary or secondary vesicular stomatitis virus-specific CD8 T cells in either lymphoid or nonlymphoid tissues. In contrast, the primary LM-specific CD8 T cell response was CD4 T cell dependent. Surprisingly, the LM-specific CD8 T cell recall response was also CD4 T cell dependent, which correlated with a requirement for CD40/CD40L interactions. However, concomitant inhibition of CD40L and CD4 T cell removal revealed that these pathways may be operating independently. Importantly, despite the absence of CD4 T cells during the recall response or throughout the entire response, CD8 memory T cells were functional effectors and proliferated equivalently to their "helped" counterparts. These data call into question the contention that CD4 T cells condition memory CD8 T cells during the primary response and indicate that the principal role of CD4 T cells in generating CD8 memory cells after infection is augmentation of proliferation or survival through costimulatory signals.  相似文献   

11.
12.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

13.
Ag-specific CD8(+) T cells immunized in the absence of CD4(+) T cell help, so-called "unhelped" CD8(+) T cells, are defective in function and survival. We investigated the role of the proapoptotic molecule TRAIL in this defect. We first demonstrate that TRAIL does not contribute to the CD8(+) T cell response to Listeria monocytogenes strain expressing OVA (LmOVA) in the presence of CD4(+) T cells. Secondly, we generated mice doubly deficient in CD4(+) T cells and TRAIL and analyzed their CD8(+) T cell response to LmOVA. Memory CD8(+) T cells in double-deficient mice waned over time and were not protective against rechallenge, similar to their TRAIL-sufficient unhelped counterparts. To avoid the effects of CD4(+) T cell deficiency during memory maintenance, and to address whether TRAIL plays a role in the early programming of the CD8(+) T cell response, we performed experiments using heterologous prime and early boost immunizations. We did not observe activation-induced cell death of unhelped CD8(+) T cells when mice were infected with followed vaccinia virus expressing OVA 9 days later by LmOVA infection. Furthermore, primary immunization of CD4(+) T cell-deficient mice with cell-associated Ag followed by LmOVA infection did not reveal a role for TRAIL-mediated activation-induced cell death. Overall, our results suggest that CD4(+) T cell help for the CD8(+) T cell response is not contingent on the silencing of TRAIL expression and prevention of TRAIL-mediated apoptosis.  相似文献   

14.
The CD8 coreceptor is important for positive selection of major histocompatibility complex I (MHC-I)-restricted thymocytes and in the generation of pathogen-specific T cells. However, the requirement for CD8 in these processes may not be essential. We previously showed that mice lacking beta(2)-microglobulin are highly susceptible to tumors induced by mouse polyoma virus (PyV), but CD8-deficient mice are resistant to these tumors. In this study, we show that CD8-deficient mice also control persistent PyV infection as efficiently as wild-type mice and generate a substantial virus-specific, MHC-I-restricted, T-cell response. Infection with vesicular stomatitis virus (VSV), which is acutely cleared, also recruited antigen-specific, MHC-I-restricted T cells in CD8-deficient mice. Yet, unlike in VSV infection, the antiviral MHC-I-restricted T-cell response to PyV has a prolonged expansion phase, indicating a requirement for persistent infection in driving T-cell inflation in CD8-deficient mice. Finally, we show that the PyV-specific, MHC-I-restricted T cells in CD8-deficient mice, while maintained long term at near-wild-type levels, are short lived in vivo and have extremely narrow T-cell receptor repertoires. These findings provide a possible explanation for the resistance of CD8-deficient mice to PyV-induced tumors and have implications for the maintenance of virus-specific MHC-I-restricted T cells during persistent infection.  相似文献   

15.
The off-rate (k(off)) of the T cell receptor (TCR)/peptide-major histocompatibility complex class I (pMHCI) interaction, and hence its half-life, is the principal kinetic feature that determines the biological outcome of TCR ligation. However, it is unclear whether the CD8 coreceptor, which binds pMHCI at a distinct site, influences this parameter. Although biophysical studies with soluble proteins show that TCR and CD8 do not bind cooperatively to pMHCI, accumulating evidence suggests that TCR associates with CD8 on the T cell surface. Here, we titrated and quantified the contribution of CD8 to TCR/pMHCI dissociation in membrane-constrained interactions using a panel of engineered pMHCI mutants that retain faithful TCR interactions but exhibit a spectrum of affinities for CD8 of >1,000-fold. Data modeling generates a "stabilization factor" that preferentially increases the predicted TCR triggering rate for low affinity pMHCI ligands, thereby suggesting an important role for CD8 in the phenomenon of T cell cross-reactivity.  相似文献   

16.
The major known genetic risk factors in multiple sclerosis reside in the major histocompatibility complex (MHC) region. Although there is strong evidence implicating MHC class II alleles and CD4(+) T cells in multiple sclerosis pathogenesis, possible contributions from MHC class I genes and CD8(+) T cells are controversial. We have generated humanized mice expressing the multiple sclerosis-associated MHC class I alleles HLA-A(*)0301 (encoding human leukocyte antigen-A3 (HLA-A3)) and HLA-A(*)0201 (encoding HLA-A2) and a myelin-specific autoreactive T cell receptor (TCR) derived from a CD8(+) T cell clone from an individual with multiple sclerosis to study mechanisms of disease susceptibility. We demonstrate roles for HLA-A3-restricted CD8(+) T cells in induction of multiple sclerosis-like disease and for CD4(+) T cells in its progression, and we also define a possible mechanism for HLA-A(*)0201-mediated protection. To our knowledge, these data provide the first direct evidence incriminating MHC class I genes and CD8(+) T cells in the pathogenesis of human multiple sclerosis and reveal a network of MHC interactions that shape the risk of multiple sclerosis.  相似文献   

17.
The response of H-Y-specific TCR-transgenic CD8(+) T cells to Ag is characterized by poor proliferation, cytolytic activity, and IFN-gamma secretion. IFN-gamma secretion, but not cytotoxic function, can be rescued by the B7.1 molecule, suggesting that costimulation can selectively enhance some, but not all, effector CD8(+) T cell responses. Although the H-Y epitope binds H-2D(b) relatively less well than some other epitopes, it can induce potent CTL responses in nontransgenic mice, suggesting that the observed poor responsiveness of transgenic CD8(+) T cells cannot be ascribed to the epitope itself. Previously reported reactivity of this TCR to H-2A(b) is also not the cause of the poor responsiveness of the H-Y-specific CD8(+) T cells, as H-Y-specific CD8(+) T cells obtained from genetic backgrounds lacking H-2A(b) also responded poorly. Rather, reducing the levels of H-2(b) class I molecules by breeding the mice to (C57BL/6 x B10.D2)F(1) or TAP1(+/-) backgrounds partially restored cytotoxic activity and enhanced proliferative responses. These findings demonstrate that the self MHC class I gene dosage may regulate the extent of CD8(+) T cell responsiveness to Ag.  相似文献   

18.
In vivo electroporation dramatically enhances plasmid vaccine efficacy. This enhancement can be attributed to increased plasmid delivery and, possibly, to some undefined adjuvant properties. Previous reports have demonstrated CD8(+) T cell priming by plasmid vaccines is strongly dependent upon CD4(+) T cell help. Indeed, the efficacy of a plasmid vaccine expressing Escherichia coli beta-galactosidase was severely attenuated in MHC class II-deficient (C2D) mice. To determine whether electroporation could compensate for the absence of CD4(+) T cell help, C2D mice were immunized by a single administration of plasmid in combination with electroporation using two conditions which differed only by the duration of the pulse (20 or 50 msec). Both conditions elicited robust cellular and humoral responses in wild-type mice, as measured by IFN-gamma ELISPOT, anti-beta-galactosidase ELISA, and protection from virus challenge. In C2D mice, the cellular response produced by the vaccine combined with the 50-msec pulse, as measured by ELISPOT, was identical to the response in wild-type mice. The 20-msec pulse elicited a milder response that was approximately one-fifth that of the response elicited by the 50-msec pulse. By contrast, the 20-msec conditions provided comparable protection in both wild-type and C2D recipients whereas the protection elicited by the 50-msec conditions in C2D mice was weaker than in wild-type mice. Further investigation is required to understand the discordance between the ELISPOT results and outcome of virus challenge in the C2D mice. Nonetheless, using this technique to prime CD8(+) T cells using plasmid vaccines may prove extremely useful when immunizing hosts with limiting CD4(+) T cell function, such as AIDS patients.  相似文献   

19.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

20.
We have shown that alloreactive CD8 T cell activation may proceed via CD4-dependent and CD4-independent pathways, and that CD8 T cell activation in Ag-primed animals is independent of CD154 costimulation. In this report, we further analyzed the activation and function of alloreactive CD8 CTL effectors in CD4 knockout (KO) skin/cardiac allograft recipients. FACS analysis showed that alloreactive CD8 T cells were activated at a significantly reduced level in CD4 KO mice. Importantly, these helpless CD8 T cells failed to develop CD154 blockade resistance following reactivation by the same alloantigen, indicative of defective memory formation. Only transient CD4 help was required, as short-term CD4 blockade at the time of first skin graft challenge only delayed alloreactive CD8 activation, without affecting the CD8 T cell memory response to a second skin graft. Moreover, postoperative CD4 blockade had no effect on alloreactive CD8 activation. Alloreactive CD8 cells generated in the absence of CD4 help exhibited decreased effector responses. Interestingly, intragraft induction of T cell-targeted chemokines early after transplant was also dependent on CD4 help, as the induction kinetics of CXCL9 and CCL5 in CD4 KO recipients was significantly delayed, coupled with similarly delayed infiltration by CD3/CD8 cells. Remarkably, helpless CD8 cells ultimately entering the graft still displayed significantly diminished T cell effector molecules (IFN-gamma, granzyme B). Thus, CD4 help is critical for alloreactive CD8 activation, function, and memory formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号