首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.  相似文献   

2.
HLA-B*2704 is strongly associated with ankylosing spondylitis. B*2706, which differs from B*2704 by two amino acid changes, is not associated with this disease. A systematic comparison of the B*2704- and B*2706-bound peptide repertoires was carried out to elucidate their overlap and differential features and to correlate them with disease susceptibility. Both subtypes shared about 90% of their peptide repertoires, consisting of peptides with Arg(2) and C-terminal aliphatic or Phe residues. B*2706 polymorphism influenced specificity at three anchor positions: it favored basic residues at P3 and POmega-2 and impaired binding of Tyr and Arg at POmega. Thus, the main structural feature of peptides differentially bound to B*2704 was the presence of C-terminal Tyr or Arg, together with a strong preference for aliphatic/aromatic P3 residues. This is the only known feature of B*2704 and B*2706 that correlates to their differential association with spondyloarthropathy. The concomitant presence of basic P3 and POmega-2 residues was observed only among peptides differentially bound to B*2706, suggesting that it impairs binding to B*2704. Similarity between peptide overlap and the degree of cross-reaction with alloreactive T lymphocytes suggested that the majority of shared ligands maintain unaltered antigenic features in the context of both subtypes.  相似文献   

3.
In contrast to HLA-B*2705, B*2709 is weakly or not associated to ankylosing spondylitis. Both allotypes differ by a single D116H change. We compared the B*2705- and B*2709-bound peptide repertoires by mass spectrometry to quantify the effect of B*2709 polymorphism on peptide specificity. In addition, shared and differentially bound ligands were sequenced to define the structural features of the various peptide subsets. B*2705 shared 79% of its peptide repertoire with B*2709. Shared ligands accounted for 88% of the B*2709-bound repertoire. All B*2705 ligands not bound to B*2709 had C-terminal basic or Tyr residues. Most B*2709-bound peptides had C-terminal aliphatic and Phe residues, but two showed C-terminal Arg or Tyr. The B*2709-bound repertoire included 12% of peptides not found in B*2705. These had aliphatic C-terminal residues, which are also favored in B*2705. However, these peptides bound weakly B*2705 in vitro, indicating distinct contribution of secondary anchor residues in both subtypes. Differences in peptide binding did not affect the ratio of native to beta2-microglobulin-free HLA-B27 heavy chain at the cell surface. Our results suggest that weaker association of B*2709 with ankylosing spondylitis is based on differential binding of a limited subset of natural ligands by this allotype.  相似文献   

4.
Proteins containing tandemly repetitive sequences are present in several immunodominant protein antigens in pathogenic protozoan parasites. The tandemly repetitive Trypanosoma cruzi B13 protein is recognized by IgG antibodies from 98% of Chagas' disease patients. Little is known about the molecular mechanisms that lead to the immunodominance of the repeated sequences, and there is limited information on T cell epitopes in such repetitive antigens. We finely characterized the T cell recognition of the tandemly repetitive, degenerate B13 protein by T cell lines, clones and PBMC from Chagas' disease cardiomyopathy (CCC), asymptomatic T. cruzi infected (ASY) and non-infected individuals (N). PBMC proliferative responses to recombinant B13 protein were restricted to individuals bearing HLA-DQA1*0501(DQ7), -DR1, and -DR2; B13 peptides bound to the same HLA molecules in binding assays. The HLA-DQ7-restricted minimal T cell epitope [FGQAAAG(D/E)KP] was identified with an overlapping combinatorial peptide library including all B13 sequence variants in T. cruzi Y strain B13 protein; the underlined small residues GQA were the major HLA contact residues. Among natural B13 15-mer variant peptides, molecular modeling showed that several variant positions were solvent (TCR)-exposed, and substitutions at exposed positions abolished recognition. While natural B13 variant peptide S15.9 seems to be the immunodominant epitope for Chagas' disease patients, S15.4 was preferentially recognized by CCC rather than ASY patients, which may be pathogenically relevant. This is the first thorough characterization of T cell epitopes of a tandemly repetitive protozoan antigen and may suggest a role for T cell help in the immunodominance of protozoan repetitive antigens.  相似文献   

5.
HLA-B*2702, B*2704, and B*2705 are strongly associated with spondyloarthritis, whereas B*2706 is not. Subtypes differ among each other by a few amino acid changes and bind overlapping peptide repertoires. In this study we asked whether differential subtype association with disease is related to differentially bound peptides or to altered antigenicity of shared ligands. Alloreactive CTL raised against B*2704 were analyzed for cross-reaction with B*2705, B*2702, B*2706, and mutants mimicking subtype changes. These CTL are directed against many alloantigen-bound peptides and can be used to analyze the antigenicity of HLA-B27 ligands on different subtypes. Cross-reaction of anti-B*2704 CTL with B*2705 and B*2702 correlated with overlap of their peptidic anchor motifs, suggesting that many shared ligands have similar antigenic features on these three subtypes. Moreover, the percent of anti-B*2704 CTL cross-reacting with B*2706 was only slightly lower than the overlap between the corresponding peptide repertoires, suggesting that most shared ligands have similar antigenic features on these two subtypes. Cross-reaction with B*2705 or mutants mimicking changes between B*2704 and B*2705 was donor-dependent. In contrast, cross-reaction with B*2702 or B*2706 was less variable among individuals. Conservation of antigenic properties among subtypes has implications for allorecognition, as it suggests that shared peptides may determine cross-reaction across exposed amino acid differences in the MHC molecules and that the antigenic distinctness of closely related allotypes may differ among donors. Our results also suggest that differential association of HLA-B27 subtypes with spondyloarthritis is more likely related to differentially bound peptides than to altered antigenicity of shared ligands.  相似文献   

6.
Studies of the stability of HLA-DQ have revealed a correlation between SDS stability of MHC class II alphabeta dimers and insulin-dependent diabetes mellitus (IDDM) susceptibility. The MHC class II alphabeta dimer encoded by HLA-DQA1*0102/DQB1*0602 (DQ0602), which is a dominant protective allele in IDDM, exhibits the greatest SDS stability among HLA-DQ molecules in EBV-transformed B-lymphoblastoid cells and PBLs. DQ0602 is also uniquely SDS stable in the HLA-DM-deficient cell line, BLS-1. We addressed the molecular mechanism of the stability of DQ0602 in BLS-1. A panel of mutants based on the polymorphic differences between HLA-DQA1*0102/DQB1*0602 and HLA-DQA1*0102/DQB1*0604 were generated and expressed in BLS-1. An Asp at beta57 was found to be critical for SDS stability, whereas Tyr at beta30, Gly at beta70, and Ala at beta86 played secondary roles. Furthermore, the level of class II-associated invariant chain peptide bound to HLA-DQ did not correlate with SDS stability, suggesting that class II-associated invariant chain peptide does not play a direct role in the unique SDS stability of DQ0602. These results support a role for DQB1 codon 57 in HLA-DQ alphabeta dimer stability and IDDM susceptibility.  相似文献   

7.
The peptide specificity of HLA-B*1403, an allotype associated with ankylosing spondylitis (Lopez-Larrea, C., Mijiyawa, M., Gonzalez, S., Fernandez-Morera, J. L., Blanco-Gelaz, M. A., Martinez-Borra, J., and Lopez-Vazquez, A. (2002) Arthritis Rheum. 46, 2968-2971) was compared with those of the non-associated B*1402 and the prototypic disease-associated B*2705 allotypes. Although differing by a single residue (L156R), B*1402 and B*1403 shared only 32-35% of their peptide repertoires. Subtype-related differences observed in multiple peptide positions, including P3 and P7, were largely explained by a direct effect of the L156R change on peptide specificity. The HLA-B14 subtypes shared only approximately 3% of their peptide repertoires with B*2705. This was due to distinct residue usage at most positions, as revealed by statistical comparison of B*1402, B*1403, and B*2705-bound nonamers. Nevertheless, shared ligands between B*2705 and B*1403 were formally identified, although ligands common to B*2705 and B*1403, but absent from B*1402, were not found. Alloreactive T-cells were used as a tool to analyze epitope sharing among B*1402, B*1403, and B*2705. The percentage of cross-reactive T-cell clones closely paralleled peptide overlap, suggesting that shared ligands tend to maintain their antigenic features when bound to the different allotypes. Our results indicate that B*1403 and B*2705 can present common peptides. However, both the disparity of their peptide repertoires and the lack of binding features shared by these two allotypes, but not B*1402, argue against, although do not exclude, a mechanism of spondyloarthritis mediated by specific ligands of B*2705 and B*1403.  相似文献   

8.
At the functional level, the majority of human leukocyte antigen (HLA) class I MHC variants can be classified into about ten different major groups, or supertypes, characterized by overlapping peptide binding motifs and repertoires. Previous studies have detailed the peptide binding specificity of the HLA A2, A3, B7, and B44 supertypes, and predicted, on the basis of MHC pocket structures, known motifs, or the sequence of T cell epitopes, the existence of the HLA A1 and A24 supertypes. Direct experimental validation of the A1 and A24 supertypes, however, has been lacking. In the current study, the peptide-binding repertoires and main anchor specificities of several common HLA A molecules (A*0101, A*2301, A*2402, A*2601, A*2902, and A*3002) predicted to be members of the A1 or A24 supertypes were analyzed and defined using single amino acid substituted peptides and a large peptide library. Based on the present findings, the A1 supertype includes A*0101, A*2601, A*2902, and A*3002, whereas the A24 supertype includes A*2301 and A*2402. Interestingly, A*2902 is associated with a motif and peptide binding repertoire that overlaps significantly with those of all of the A1- and A24-supertype molecules studied, representing—to our knowledge—the first report of significant cross-reactivity among molecules belonging to different supertypes.  相似文献   

9.
HLA-B*2705 is strongly associated with ankylosing spondylitis (AS) and reactive arthritis. In contrast, B*2709 has been reported to be more weakly or not associated to AS. These two molecules differ by a single amino acid change: aspartic acid in B*2705 or histidine in B*2709 at position 116. In this study, we analyzed the degree of T cell epitope sharing between the two subtypes. Ten allospecific T cell clones raised against B*2705, 10 clones raised against B*2703 but cross-reactive with B*2705, and 10 clones raised against B*2709 were examined for their capacity to lyse B*2705 and B*2709 target cells. The anti-B*2705 and anti-B*2703 CTL were peptide dependent as demonstrated by their failure to lyse TAP-deficient B*2705-T2 transfectant cells. Eight of the anti-B*2705 and five of the anti-B*2703 CTL clones lysed B*2709 targets. The degree of cross-reaction between B*2705 and B*2709 was donor dependent. In addition, the effect of the B*2709 mutation (D116H) on allorecognition was smaller than the effect of the other naturally occurring subtype change at this position, D116Y. These results demonstrate that B*2705 and B*2709 are the antigenically closest HLA-B27 subtypes. Because allospecific T cell recognition is peptide dependent, our results imply that the B*2705- and B*2709-bound peptide repertoires are largely overlapping. Thus, to the extent to which linkage of HLA-B27 with AS is related to the peptide-presenting properties of this molecule, our results would imply that peptides within a relatively small fraction of the HLA-B27-bound peptide repertoire influence susceptibility to this disease.  相似文献   

10.
11.
 Celiac disease (CD) patients usually express a DQ2 heterodimer, whose chains DQα1*0501/DQβ1*0201, are encoded by the genes HLA-DQA1*0501 and DQB1*0201, respectively. Among the DQ2 carriers, the risk of developing disease was shown to correlate with the number of DQβ1*0201 chains encoded. Studying two separate cohorts of Italian and Tunisian patients, we now show a significant association of celiac disease with expression of either the DQ2 or DR53 heterodimers. The risk is maximal for individuals that carry both DQ2 and DR53 heterodimers. When twenty synthetic peptides overlapping most of A-gliadin sequence were tested for the binding to various purified DR molecules, it was found that DR53 molecules bind selectively and with high affinity (IC50<1 μM) to A-gliadin-derived peptides. These data suggest that both HLA DQ2 and DR53 molecules are associated with increased genetic risk for CD, and provide a possible biochemical basis for this complex association. Received: 1 August 1998 / Revised: 24 February 1999  相似文献   

12.
Because susceptibility to celiac disease is associated strongly with HLA-DQ2 (DQA1*05/DQB1*02) and weakly with HLA-DQ8 (DQA1*03/DQB1*03), a subset of patients carries both HLA-DQ2 and HLA-DQ8. As a result, these patients may express two types of mixed HLA-DQ2/8 transdimers (encoded by DQA1*05/DQB1*03 and DQA1*03/DQB1*02) in addition to HLA-DQ2 and HLA-DQ8. Using T cells from a celiac disease patient expressing HLA-DQ8trans (encoded by DQA*0501/DQB*0302), but neither HLA-DQ2 nor HLA-DQ8, we demonstrate that this transdimer is expressed on the cell surface and can present multiple gluten peptides to T cell clones isolated from the duodenum of this patient. Furthermore, T cell clones derived from this patient and HLA-DQ2/8 heterozygous celiac disease patients respond to gluten peptides presented by HLA-DQ8trans, as well as HLA-DQ8, in a similar fashion. Finally, one gluten peptide is recognized better when presented by HLA-DQ8trans, which correlates with preferential binding of this peptide to HLA-DQ8trans. These results implicate HLA-DQ8trans in celiac disease pathogenesis and demonstrate extensive T cell cross-reactivity between HLA-DQ8 and HLA-DQ8trans. Because type 1 diabetes is strongly associated with the presence of HLA-DQ8trans, our findings may bear relevance to this disease as well.  相似文献   

13.
HLA-DQA1*0102-DQB1*0602 is associated with protection against type 1 diabetes (T1D). A similar allele, HLA-DQA1*0102-DQB1*0604, contributes to T1D susceptibility in certain populations but differs only at seven amino acids from HLA-DQA1*0102-DQB1*0602. Five of these polymorphisms are found within the peptide-binding groove, suggesting that differences in peptide binding contribute to the mechanism of their association with T1D. In this study, we determine the peptide-binding motif for HLA-DQA1*0102-DQB1*0604 allelic protein (DQ0604) in comparison to the established HLA-DQA1*0102-DQB1*0602 (DQ0602) motif using binding assays with model peptides from T1D autoantigens and homology modeling using the coordinates of the DQ0602-hypocretin 1-13 crystal structure. The peptide binding preferences were deduced with a peptide from insulin that bound both with a 2- to 3-fold difference in avidity using the same amino acids in the peptide as anchors. Peptide binding differences directly influenced by the polymorphisms in or nearby pockets 1, 6, and 9 were observed. In pocket 1, DQ0604 was better able to accommodate aromatic residues due to the beta86 and beta87 polymorphisms. A negatively charged amino acid was preferred by DQ0604 in pocket 6 due to the positively charged beta30His. In pocket 9, DQ0604 preferred aromatic amino acids due to the beta9 and beta30 polymorphisms and had low tolerance of acidic residues. beta57Val in DQ0604 functions differently than beta57Ala, in that it pushes alpha76Arg outside of the pocket, preventing the formation of a salt bridge with an acidic amino acid in the peptide. This study furthers our understanding of the structure-function relationships of MHC class II polymorphisms.  相似文献   

14.
Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n?=?63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500?nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.  相似文献   

15.
HLA-DM (DM) catalyzes CLIP release, stabilizes MHC class II molecules, and edits the peptide repertoire presented by class II. Impaired DM function may have profound effects on Ag presentation events in the thymus and periphery that are critical for maintenance of self-tolerance. The associations of the HLA-DQ2 (DQ2) allele with celiac disease and type 1 diabetes mellitus have been appreciated for a long time. The explanation for these associations, however, remains unknown. We previously found that DQ2 is a poor substrate for DM. In this study, to further characterize DQ2-DM interaction, we introduced point mutations into DQ2 on the proposed DQ2-DM interface to restore the sensitivity of DQ2 to DM. The effects of mutations were investigated by measuring the peptide dissociation and exchange rate in vitro, CLIP and DQ2 expression on the cell surface, and the presentation of α-II-gliadin epitope (residues 62-70) to murine, DQ2-restricted T cell hybridomas. We found that the three α-chain mutations (α+53G, α+53R, or αY22F) decreased the intrinsic stability of peptide-class II complex. More interestingly, the α+53G mutant restored DQ2 sensitivity to DM, likely due to improved interaction with DM. Our data also suggest that α-II-gliadin 62-70 is a DM-suppressed epitope. The DQ2 resistance to DM changes the fate of this peptide from a cryptic to an immunodominant epitope. Our findings elucidate the structural basis for reduced DQ2-DM interaction and have implications for mechanisms underlying disease associations of DQ2.  相似文献   

16.
Although the SIV-infected Indian rhesus macaque (Macaca mulatta) is the animal model most widely used for studying HIV infection, our current understanding of the functional macaque MHC class I molecules is limited. To date, SIV-derived CD8+ T lymphocyte epitopes from only three high frequency macaque MHC class I molecules have been extensively characterized. In this study, we defined the peptide-binding properties of the high frequency Indian rhesus macaque class I molecule, Mamu-B*01 ( approximately 26%). We first identified a preliminary binding motif by eluting and sequencing endogenously bound Mamu-B*01 ligands. We further characterized the peptide-binding characteristics using panels of single amino acid substitution analogs. Using this detailed motif, 507 peptides derived from SIV(mac)239 were identified and tested for their Mamu-B*01 binding capacity. Surprisingly, only 11 (2.2%) of these motif-containing peptides bound with IC50 values < or =500 nM. We assessed the immunogenicity of these peptides using freshly isolated PBMC from ten Mamu-B*01+ SIV-infected rhesus macaques in IFN-gamma ELISPOT and IFN-gamma/TNF-alpha intracellular cytokine staining assays. Lymphocytes from these SIV-infected macaques responded to none of these peptides. Furthermore, there was no sequence variation indicative of escape in the regions of the virus that encoded these peptides. Additionally, we could not confirm previous reports of SIV-derived Mamu-B*01-restricted epitopes in the Env and Gag proteins. Our results suggest that the high frequency MHC class I molecule, Mamu-B*01, is not involved in SIV-specific CD8+ T lymphocyte responses.  相似文献   

17.
Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ~50% of chimpanzee MHC haplotypes. Comparing Patr-AL(+) and Patr-AL(-) haplotypes showed Patr-AL defines a unique 125-kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5' part of human pseudogene HLA-Y, carried by ~10% of HLA haplotypes. Thus, the AL gene alternatively evolved in these closely related species to become classical, nonclassical, and nonfunctional. Although differing by 30 aa substitutions in the peptide-binding α(1) and α(2) domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable with that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α(2) helix. Stimulating PBMCs from Patr-AL(-) chimpanzees with B cells expressing Patr-AL produced potent alloreactive CD8 T cells with specificity for Patr-AL and no cross-reactivity toward other MHC class I molecules, including HLA-A*02. In contrast, PBMCs from Patr-AL(+) chimpanzees are tolerant of Patr-AL.  相似文献   

18.
The SIV-infected rhesus macaque is an excellent model to examine candidate AIDS virus vaccines. These vaccines should elicit strong CD8(+) responses. Previous definition of the peptide-binding motif and optimal peptides for Mamu-A*01 has created a demand for Mamu-A*01-positive animals. We have now studied a second MHC class I molecule, Mamu-B*17, that is present in 12% of captive-bred Indian rhesus macaques. The peptide-binding specificity of the Mamu-B*17 molecule was characterized using single substitution analogs of two Mamu-B*17-binding peptides and libraries of naturally occurring sequences of viral or bacterial origin. Mamu-B*17 uses position 2 and the C terminus of its peptide ligands as dominant anchor residues. The C terminus was found to have a very narrow specificity for the bulky aromatic residue W, with other aromatic residues (F and Y) being only occasionally tolerated. Position 2 is associated with a broad chemical specificity, readily accommodating basic (H and R), bulky hydrophobic (F and M), and small aliphatic (A) residues. Using this motif, we identified 50 peptides derived from SIV(mac)239 that bound Mamu-B*17 with an affinity of 500 nM or better. ELISPOT and intracellular cytokine-staining assays showed that 16 of these peptides were antigenic. We have, therefore, doubled the number of MHC class I molecules for which SIV-derived binding peptides have been characterized. This allows for the quantitation of immune responses through tetramers and analysis of CD8(+) function by intracellular cytokine-staining assays and ELISPOT. Furthermore, it is an important step toward the design of a multiepitope vaccine for SIV and HIV.  相似文献   

19.
Recognition of self peptides bound to the class I major histocompatibility complex molecule HLA-B27 is thought to trigger proliferation of autoreactive T cells and result in autoimmune arthritic diseases. Previous work from other laboratories established that a predominant feature of endogenous peptides eluted from purified B27 is an arginine at position 2. We studied the binding of peptides containing both natural and unnatural amino acids by the subtype HLA-B*2702, with the goal of gaining insight into peptide binding by this B27 subtype that is associated with susceptibility to arthritic disease. A soluble from of B*2702 was depleted of endogenous peptides. We tested the binding of peptides substituted with cysteine, homocysteine, or an alpha-amino-epsilon-mercapto hexanoic acid side chain (Amh) instead of the naturally occurring arginine at position 2, to determine whether the peptide sulfhydryl residue could be covalently linked to cysteine 67 in the B*2702 binding cleft. Although none of the altered peptide sequences bound covalently to B*2702, the affinities of the homocysteine- and Amh-substituted peptides were close to that of the native peptide sequence. Substitutions at position 2 with other side chains, such as glutamine and methionine, also resulted in peptides that bound with only slightly reduced affinity. These results demonstrate that peptide side chains other than arginine at position 2 can be accomodated within the B*2702 peptide binding site with only minor reductions in affinity. This extended repertoire of permissible B27-binding peptides should be taken into account for a consideration of disease-associated peptide sequences.  相似文献   

20.
MOTIVATION: While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. METHODS: We describe a structure-based prediction model for modeling peptide-DQ3.2beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2beta binding and non-binding peptides obtained from biochemical and functional studies. RESULTS: Our model predicts DQ3.2beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号