首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.  相似文献   

2.
Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by ~80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.  相似文献   

3.
4.
Retroviral Gag proteins are membrane-bound polyproteins that are necessary and sufficient for virus-like particle (VLP) formation. It is not known how Gag traffics through the cell or how the site of particle production is determined. Here we use two techniques, biarsenical/tetracysteine (TC) labeling and release from a cycloheximide block, to follow the trafficking of newly synthesized HIV-1 Gag. Gag first appears diffusely distributed in the cytosol, accumulates in perinuclear clusters, passes transiently through a multivesicular body (MVB)-like compartment, and then travels to the plasma membrane (PM). Sequential passage of Gag through these temporal intermediates was confirmed by live cell imaging. Induction of a transient rise in cytoplasmic calcium increased the amounts of Gag, Gag assembly intermediates and VLPs in MVBs, and resulted in a dramatic increase in VLP release. These results define an intracellular trafficking pathway for HIV-1 Gag that uses perinuclear compartments and the MVB as trafficking intermediates. We propose that the regulation of Gag association with MVB-like compartments regulates the site of HIV-1 budding and particle formation.  相似文献   

5.
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.  相似文献   

6.

Background

DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium.

Results

Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD) formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone.

Conclusion

The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.  相似文献   

7.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.  相似文献   

8.
9.
Retroviral Gag polyprotein precursors are both necessary and sufficient for the assembly and release of virus-like particles (VLPs) from infected cells. It is well established that small Gag-encoded motifs, known as late domains, promote particle release by interacting with components of the cellular endosomal sorting and ubiquitination machinery. The Gag proteins of a number of different retroviruses are ubiquitinated; however, the role of Gag ubiquitination in particle egress remains undefined. In this study, we investigated this question by using a panel of equine infectious anemia virus (EIAV) Gag derivatives bearing the wild-type EIAV late domain, heterologous retroviral late domains or no late domain. Ubiquitin was fused in cis to the C-termini of these Gag polyproteins, and the effects on VLP budding were measured. Remarkably, fusion of ubiquitin to EIAV Gag lacking a late domain (EIAV/DeltaYPDL-Ub) largely rescued VLP release. We also determined the effects of ubiquitin fusion on the sensitivity of particle release to budding inhibitors and to depletion of key endosomal sorting factors. Ubiquitin fusion rendered EIAV/DeltaYPDL-Ub sensitive to depletion of cellular endosomal sorting factors Tsg101 and Alix and to overexpression of dominant-negative fragments of Tsg101 and Alix. These findings demonstrate that ubiquitin can functionally compensate for the absence of a retroviral late domain and provide insights into the host-cell machinery engaged by ubiquitin during particle egress.  相似文献   

10.
A final step in retrovirus assembly, particle release from the cell, is modulated by a small motif in the Gag protein known as a late domain. Recently, human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV) were shown to require components of the cellular vacuolar protein sorting (VPS) machinery for efficient viral release. HIV-1 interacts with the VPS pathway via an association of HIV-1 Gag with TSG101, a component of the cellular complexes involved in VPS. Equine infectious anemia virus (EIAV) is unique among enveloped viruses studied to date because it utilizes a novel motif, YPDL in Gag, as a late domain. Our analysis of EIAV assembly demonstrates that EIAV Gag release is blocked by inhibition of the VPS pathway. However, in contrast to HIV-1, EIAV Gag release is insensitive to TSG101 depletion and EIAV particles do not contain significant levels of TSG101. Finally, we demonstrate that fusing EIAV Gag directly with another cellular component of the VPS machinery, VPS28, can restore efficient release of an EIAV Gag late-domain mutant. These results provide evidence that retroviruses can interact with the cellular VPS machinery in several different ways to accomplish particle release.  相似文献   

11.
Fluorescence fluctuation spectroscopy determines the brightness, size, and concentration of fluorescent particles from the intensity bursts generated by individual particles passing through a small observation volume. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used previously to determine the stoichiometry of small oligomers in cells. We extend brightness analysis to large macromolecular protein complexes containing thousands of proteins and determine their stoichiometry. This study investigates viral-like particles (VLP) formed from human immunodeficiency virus type 1 (HIV-1) Gag protein expressed in COS-1 cells using fluorescence fluctuation spectroscopy to determine the stoichiometry of HIV-1 Gag within the particles. Control experiments establish that the stoichiometry and size of VLPs are not influenced by labeling of HIV-1 Gag with a fluorescent protein. The experiments further show that the brightness scales linearly with the amount of labeled Gag within the particle. Brightness analysis shows that the Gag stoichiometry of VLPs formed in COS-1 cells is not constant, but varies with the amount of transfected DNA plasmid. We observed HIV-1 Gag stoichiometries ranging from ∼750 to ∼2500, whereas the size of the VLPs remains unchanged. This result indicates that large areas of the VLP membrane are void of Gag protein. Therefore, a closed layer of HIV-1 Gag at the membrane is not required for VLP production. This study shows that brightness analysis has the potential to become an important tool for investigating large molecular complexes by providing quantitative information about their size and composition.  相似文献   

12.
Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.  相似文献   

13.
HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag). Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.  相似文献   

14.
Like all viruses, HIV-1 requires cellular host factors for replication. The mechanisms for production of progeny virions involving these host factors, however, are not fully understood. To better understand these mechanisms, we used a yeast (Saccharomyces cerevisiae) genetic screen to identify mutant strains in which HIV-1 Gag targeting to the plasma membrane was aberrant. Of the 917 mutants identified, we selected 14 mutants whose missing genes had single orthologous counterparts in human and tested them for Gag-induced viruslike particle (VLP) release in yeast cells. We found that the Vps18 and Mon2 proteins were important for HIV-1 Gag-induced VLP release in yeast. In eukaryote cells, these host proteins are highly conserved and function in protein trafficking. Depletion of hVps18 or hMon2 reduced the efficient production of infectious HIV-1 virions in human cells. Our data suggest that these cellular factors play an important role in the efficient production of infectious HIV-1 virion particles.  相似文献   

15.
Yang L  Song Y  Li X  Huang X  Liu J  Ding H  Zhu P  Zhou P 《Journal of virology》2012,86(14):7662-7676
The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1.  相似文献   

16.
Assembly of retrovirus-like particles only requires the expression of the Gag polyprotein precursor. We have exploited this in the development of a model system for studying the virus particle assembly pathway for bovine leukemia virus (BLV). BLV is closely related to the human T-cell leukemia viruses (HTLVs), and all are members of the Deltaretrovirus genus of the Retroviridae family. Overexpression of a BLV Gag polyprotein containing a carboxy-terminal influenza virus hemagglutinin (HA) epitope tag in mammalian cells led to the robust production of virus-like particles (VLPs). Site-directed mutations were introduced into HA-tagged Gag to test the usefulness of this model system for studying certain aspects of the virus assembly pathway. First, mutations that disrupted the amino-terminal glycine residue that is important for Gag myristylation led to a drastic reduction in VLP production. Predictably, the nature of the VLP production defect was correlated to Gag membrane localization. Second, mutation of the PPPY motif (located in the MA domain) greatly reduced VLP production in the absence of the viral protease. This reduction in VLP production was more severe in the presence of an active viral protease. Examination of particles by electron microscopy revealed an abundance of particles that began to pinch off from the plasma membrane but were not completely released from the cell surface, indicating that the PPPY motif functions as a late domain (L domain).  相似文献   

17.
During assembly and budding of retroviruses, host cell proteins are incorporated into viral particles. Identification of virion-associated proteins may help pinpoint key cellular components required for virus production and function. The cellular protein annexin 2 (Anx2) is incorporated into HIV-1 particles, and knockdown of Anx2 has been reported to cause defects in Gag processing and infectivity of HIV-1 particles in macrophages. Here, we tested whether Anx2 was required for HIV-1 production in other cell types capable of producing HIV-1 virions. Endogenous Anx2 levels were knocked down by ∼98% using lentivirus encoding short hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) targeting Anx2. Under these conditions, there was no reduction in HIV-1 virus-like particle (VLP) production in either COS-1, 293T, or Jurkat T cells or primary human monocyte-derived macrophages (MDMs). Murine embryonic fibroblasts derived from Anx2−/− mice produced the same levels of VLPs as matched cells from wild-type mice. The calcium-mediated spike in VLP production still occurred in Anx2-depleted COS-1 cells, and there was no apparent alteration in the intracellular Gag localization. Overexpression of Anx2 in trans had no effect on Gag processing or VLP production. Neither Anx2 depletion nor Anx2 overexpression altered the infectivity of HIV-1 particles produced by COS-1 or 293T cells. However, supernatants containing virus from Anx2 siRNA-treated primary human MDMs exhibited decreased infectivity. These data indicate that Anx2 is not required for HIV-1 assembly or Gag processing but rather plays a cell type-dependent role in regulating production of infectious HIV-1 by macrophages.The Gag polyprotein generates the key structural proteins for all retroviruses. Gag is necessary and sufficient for the formation of virus-like particles (VLPs), which are morphologically similar to immature virions. Following its synthesis in the cytoplasm, HIV-1 Gag is trafficked to sites of particle production on membranes. Viral particle production depends on Gag-membrane interactions mediated by the myristoylated MA domain of Gag (18, 22, 31) and Gag-Gag interactions mediated by the CA and NC domains. Budding and release of the new virion are mediated by the Gag p6 domain. For successful particle production to occur, HIV-1 Gag must also interact with numerous host cell proteins and protein complexes. Identification of these interactions provides a crucial window into determining Gag trafficking intermediates as well as clues to the mechanism of virion production.The host cell protein annexin 2 (Anx2) has recently attracted attention for its potential to regulate key processes in both cells and viruses (9, 14, 17, 24). Anx2 belongs to a family of conserved calcium-regulated proteins and interacts with actin, membranes, and negatively charged phospholipids. The major protein binding partner for Anx2 is p11, also known as S100A10. Two populations of Anx2 have been identified: a heterotetrameric complex with two molecules of Anx2 and two molecules of p11 (found predominantly at the plasma membrane) and a monomeric form found mainly in the cytoplasm. Anx2 performs multiple functions in the cell, including regulation of actin-based dynamics, fibrinolysis, calcium-mediated exocytosis, and transport of intermediates from early to late endosomes (10, 14-16) Anx2 also enhances binding and fusion of cytomegalovirus with phospholipid membranes (21). In addition, Anx2 can be detected within influenza virus particles (28), where it has been shown to aid in virus replication (9).Several lines of evidence suggest that Anx2 may play a role in HIV-1 biogenesis. Both Anx2 and its binding partner p11 are incorporated in HIV-1 particles produced by macrophages (2). Anx2 interacts with Gag in macrophages, and annexin 2 knockdown has been reported to cause defective Gag processing and reduced infectivity of the released particles (24). Blockade of Anx2 function, with either anti-Anx2 antibody or small interfering RNA (siRNA)-mediated knockdown, results in suppression of HIV-1 infection in macrophages (11). Anx2 also binds to Gag in 293T cells, and expression of Anx2 in trans in these cells has been reported to lead to increased Gag processing and HIV-1 production (7). Taken together, these findings suggest that Anx2 might play a universal role in Gag trafficking and particle production. To test this hypothesis, we exploited methods to efficiently knock down Anx2 expression and determined the effect of Anx2 knockdown in a variety of cell lines capable of producing HIV-1 virions. Here we show that, in the absence of Anx2 expression, HIV-1 Gag is expressed, trafficked, and capable of mediating viral particle formation in a manner similar to that of control cells expressing Anx2. However, a cell type-dependent effect of Anx2 depletion on HIV-1 infectivity was detected in primary human monocyte-derived macrophages (MDMs). These findings suggest that Anx2 might be a macrophage-specific host cell factor that regulates HIV-1 infectivity.  相似文献   

18.
The Gag protein is the major structural determinant of retrovirus assembly. Although a number of cellular factors have been reported to facilitate retrovirus release, little is known about the cellular machinery that directs Gag to the site of virus assembly. Here, we report roles for the Golgi-localized gamma-ear containing Arf-binding (GGA) and ADP ribosylation factor (Arf) proteins in retrovirus particle assembly and release. Whereas siRNA-mediated depletion of GGA2 and GGA3 led to a significant increase in particle release in a late domain-dependent manner, GGA overexpression severely reduced retrovirus particle production by impairing Gag trafficking to the membrane. GGA overexpression inhibited retroviral assembly and release by disrupting Arf protein activity. Furthermore, disruption of endogenous Arf activity inhibited particle production by decreasing Gag-membrane binding. These findings identify the GGA proteins as modulators of HIV-1 release and the Arf proteins as critical cellular cofactors in retroviral Gag trafficking to the plasma membrane.  相似文献   

19.
We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.  相似文献   

20.
Ono A  Freed EO 《Journal of virology》2004,78(3):1552-1563
The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matrix (MA) domain of Gag is a major determinant of Gag transport to the plasma membrane. In this study, we determined that in HeLa and T cells, the MA mutant Gag proteins that are defective in plasma membrane targeting form virus particles in a CD63-positive compartment, defined as the late endosome or multivesicular body (MVB). Interestingly, we find that in primary human macrophages, both wild-type (WT) and MA mutant Gag proteins are targeted specifically to the MVB. Despite the fact that particle assembly in macrophages occurs at an intracellular site rather than at the plasma membrane, we observe that WT Gag expressed in this cell type is released as extracellular virions with high efficiency. These results demonstrate that Gag targeting to and assembly in the MVB are physiologically important steps in HIV-1 virus particle production in macrophages and that particle release in this cell type may follow an exosomal pathway. To determine whether Gag targeting to the MVB is the result of an interaction between the late domain in p6(Gag) and the MVB sorting machinery (e.g., TSG101), we examined the targeting and assembly of Gag mutants lacking p6. Significantly, the MVB localization of Gag was still observed in the absence of p6, suggesting that an interaction between Gag and TSG101 is not required for Gag targeting to the MVB. These data are consistent with a model for Gag targeting that postulates two different cellular binding partners for Gag, one on the plasma membrane and the other in the MVB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号