首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study, we demonstrate that genetically modified bone marrow-derived dendritic cells (DC) and exosomes derived from the DC, expressing either secreted IL-4 or membrane-bound IL-4, can reduce the severity and the incidence of established collagen-induced arthritis and inhibit inflammation of delayed-type hypersensitivity (DTH) in mice. The ability of the DC and DC-derived exosomes to suppress the DTH response was MHC class II and, in part, Fas ligand/Fas dependent. The DC-derived exosomes were internalized by CD11c(+) DC in the dermis at the site of injection and in the draining lymph node as well as by CD11c(+) DC and F4/80(+) macrophages in the spleen. Moreover, adoptive transfer of CD11c(+) or CD3(+) splenic cells from mice treated with exosomes showed significant reduction of footpad swelling in the DTH model. These results demonstrate that administration of DC/IL-4 or exosomes derived from DC/IL-4 are able to modulate the activity of APC and T cells in vivo through a MHC class II and partly Fas ligand/Fas-dependent mechanism, resulting in effective treatment of established collagen-induced arthritis and suppression of the DTH inflammatory response. Thus, APC-derived exosomes could be used therapeutically for the treatment of autoimmune disease and inflammatory disorders.  相似文献   

2.
We have demonstrated previously that local, adenoviral-mediated gene transfer of viral IL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. This contralateral effect is mediated in part by APCs able to traffic from the treated joint to lymph nodes as well as to untreated joints. Moreover, injection of dendritic cells (DC) genetically modified to express IL-4 or Fas ligand was able to reverse established murine arthritis. To examine the ability of exosomes derived from immunosuppressive DCs to reduce inflammation and autoimmunity, murine models of delayed-type hypersensitivity and collagen-induced arthritis were used. In this study, we demonstrate that periarticular administration of exosomes purified from either bone marrow-derived DCs transduced ex vivo with an adenovirus expressing viral IL-10 or bone marrow-derived DCs treated with recombinant murine IL-10 were able to suppress delayed-type hypersensitivity responses within injected and untreated contralateral joints. In addition, the systemic injection of IL-10-treated DC-derived exosomes was able suppress the onset of murine collagen-induced arthritis as well as reduce severity of established arthritis. Taken together, these data suggest that immature DCs are able to secrete exosomes that are involved in the suppression of inflammatory and autoimmune responses. Thus DC-derived exosomes may represent a novel, cell-free therapy for the treatment of autoimmune diseases.  相似文献   

3.
Exosomes are lipid-bound nanovesicles formed by inward budding of the endosomal membrane and released following fusion of the endosomal limiting membrane with the plasma membrane. We show here that primary leukocytes do not release exosomes unless subjected to potent activation signals, such as cytokine or mitogen stimulation. In particular, high levels of exosomes were released when murine splenic B cells were stimulated via CD40 and the IL-4 receptor. This property was shared by B cells from different anatomic locations, as newly formed marginal zone and follicular B cells were capable of secreting exosomes upon CD40/IL-4 triggering. B cell exosomes expressed high levels of MHC class I, MHC class II, and CD45RA (B220), as well as components of the BCR complex, namely, surface Ig, CD19, and the tetraspanins CD9 and CD81. Ig on the plasma membrane of primary B cells was targeted to the exosome pathway, demonstrating a link between the BCR and this exocytic pathway. IgD and IgM were the predominant Ig isotypes associated with CD40/IL-4 elicited exosomes, though other isotypes (IgA, IgG1, IgG2a/2b, and IgG3) were also detected. Together, these results suggest that exosome release is not constitutive activity of B cells, but may be induced following cell: cell signaling.  相似文献   

4.
Preferential Th1 immune response in invariant chain-deficient mice   总被引:3,自引:0,他引:3  
MHC class II molecules associate with the invariant chain (Ii) molecule during biosynthesis. Ii facilitates the folding of class II molecules, interferes with their peptide association, and is involved in MHC class II transport. In this study, we have investigated the in vitro and in vivo immune response of Ii-deficient mice (Ii(-/-)). Our results have demonstrated that CD4(+) T cells from Ii(-/-) mice proliferate normally in vitro after in vivo immunization with protein Ags. However, cytokine secretion profiles of Ag-primed CD4(+) T cells from Ii(-/-) mice differ from CD4(+) T cells from wild-type mice. Whereas cells from wild-type mice secrete IFN-gamma and IL-4, cells from Ii(-/-) mice secrete mostly IFN-gamma. Moreover, Ii(-/-) mice exhibit a normal Th1 response in the delayed-type hypersensitivity and trinitrobenzene sulfonic acid colitis models; however, these mice lack an in vivo Th2 response, as demonstrated in the asthma model. Therefore, we suggest that defective Ag presentation in Ii(-/-) mice leads selectively to a Th1 effector response.  相似文献   

5.
Immune privilege of the eye protects against sight-threatening inflammatory events, but can also permit outgrowth of otherwise nonlethal immunogenic tumors. Nonetheless, ocular tumor growth can be controlled by cellular immune responses. However, this will normally result in phthisis of the eye, in case tumor rejection is mediated by a delayed-type hypersensitivity response orchestrated by CD4(+) T cells. We now show that intraocular tumors can be eradicated by CD4(+) Th cells without inducing collateral damage of neighboring ocular tissue. Injection of tumor cells transformed by the early region 1 of human adenovirus type 5 in the anterior chamber of the eye leads to intraocular tumor formation. Tumor growth is transient in immunocompetent mice, but lethal in immunodeficient nude mice, indicating that T cell-dependent immunity is responsible for tumor clearance. Tumor rejection has all the characteristics of a CD8(+) T cell-mediated immune response, as the tumor did not express MHC class II and only tumor tissue was the subject of destruction. However, analysis of the molecular and cellular mechanisms involved in tumor clearance revealed that perforin, TNF-alpha, Fas ligand, MHC class I, and CD8(+) T cells did not play a crucial role in tumor eradication. Instead, effective tumor rejection was entirely dependent on CD4(+) Th cells, as CD4-depleted as well as MHC class II-deficient mice were unable to reject their intraocular tumor. Taken together, these observations demonstrate that CD4(+) T cells are able to eradicate MHC class II-negative tumors in an immune-privileged site without affecting surrounding tissues or the induction of phthisis.  相似文献   

6.
Yang C  Kim SH  Bianco NR  Robbins PD 《PloS one》2011,6(8):e22517
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs.  相似文献   

7.
Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.  相似文献   

8.
It is still not clear why some tumours will be recognized and destroyed by the immune system, and others will persist, grow, and eventually kill the host. It has been hypothesized that tumour cells might evade immunological destruction by expressing Fas ligand (FasL), a molecule which induces apoptosis in Fas(+) target cells. However, the role of FasL in creating an immune privileged status within a tumour remains controversial. To determine whether FasL is associated with skin tumour progression, we developed a tumour model enabling us to compare two squamous cell carcinomas (SCC). One is a regressor SCC which spontaneously regresses after injection into syngeneic mice. The other is a progressor SCC which evades immunological destruction. Detailed flow cytometric analysis was used to study tumour cell expression of FasL, Fas, CD80, CD86 and MHC class II. We also analysed the percentage of apoptotic tumour cells in vivo using annexin V and correlated skin tumour progression with CD4 and CD8 T cell infiltration. Progressor tumours expressed high levels of FasL in vivo, which was virtually absent from regressor tumours. The percentage of progressor tumours expressing MHC II was significantly greater than regressor tumours, while neither tumour expressed CD80 or CD86 costimulatory molecules. Consistent with a regressor phenotype, the percentage of viable tumour cells was significantly lower for regressor compared to progressor tumours which coincided with a significantly larger CD4(+) T cell infiltrate into the tumour mass. The results suggest that progression of skin tumours occurs if tumour cells express high levels of MHC II but not costimulatory molecules such as CD80 or CD86. This implies that tumours may induce anergy in CD4(+) T cells via MHC II antigen presentation in the absence of costimulation. To ensure escape from the immune system, tumours may then kill these T cells via a FasL-dependent mechanism.  相似文献   

9.
Giri PK  Schorey JS 《PloS one》2008,3(6):e2461
Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in na?ve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+) and CD8(+) splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+) and CD8(+) T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.  相似文献   

10.
Exosomes with immune modulatory features are present in human breast milk   总被引:6,自引:0,他引:6  
Breast milk is a complex liquid with immune-competent cells and soluble proteins that provide immunity to the infant and affect the maturation of the infant's immune system. Exosomes are nanovesicles (30-100 nm) with an endosome-derived limiting membrane secreted by a diverse range of cell types. Because exosomes carry immunorelevant structures, they are suggested to participate in directing the immune response. We hypothesized that human breast milk contain exosomes, which may be important for the development of the infant's immune system. We isolated vesicles from the human colostrum and mature breast milk by ultracentrifugations and/or immuno-isolation on paramagnetic beads. We found that the vesicles displayed a typical exosome-like size and morphology as analyzed by electron microscopy. Furthermore, they floated at a density between 1.10 and 1.18 g/ml in a sucrose gradient, corresponding to the known density of exosomes. In addition, MHC classes I and II, CD63, CD81, and CD86 were detected on the vesicles by flow cytometry. Western blot and mass spectrometry further confirmed the presence of several exosome-associated molecules. Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-gamma production from allogeneic and autologous PBMC. In addition, an increased number of Foxp3(+)CD4(+)CD25(+) T regulatory cells were observed in PBMC incubated with milk vesicle preparations. We conclude that human breast milk contains exosomes with the capacity to influence immune responses.  相似文献   

11.
BACKGROUND INFORMATION: Exosomes are small membrane vesicles secreted by several cell types during exocytic fusion of multivesicular bodies with the plasma membrane. Exosomes from tumour cells can transfer antigens from cell to cell, a property favouring antigen-specific immune responses in vitro and in vivo, and are thus an interesting putative therapeutic tool in human cancers. Exosomes have been well studied in EBV (Epstein-Barr virus)-transformed human B-cell lines; however, biological stimuli regulating exosome secretion quantitatively and/or qualitatively still remain poorly defined. RESULTS: We analysed the effect of the BCR stimulation on exosome release in the human follicular lymphoma B-cell line DOHH2. We found that BCR (B-cell receptor) triggering of DOHH2 cells induced the polarization of CD63(+) MHC class II compartments. Moreover, BCR stimulation increased the release of exosome-associated proteins in the extracellular space. Finally, we found that the BCR was expressed at the surface of exosomes, and could target a bound anti-human IgG to these vesicles. CONCLUSIONS: BCR can modulate the protein content of exosomes upon stimulation, and can target its bound antigen to these vesicles.  相似文献   

12.
13.
We have previously shown that the fusion of GM-CSF and IL-21 (GIFT-21) possesses a potent immune stimulatory effect on myeloid cells. In this study, we define the effect of GIFT-21 on naive murine monocytes (GIFT-21 dendritic cells [DCs]), which express increased levels of Gr-1, CD45R, MHC class I, CD80, CD86, and CXCR4 and suppress CD11c and MHC class II. Compared with conventional dendritic cells, GIFT-21 DCs produced substantially more CCL2, IL-6, TNF-α, and IFN-α and induced significantly greater production of IFN-γ by CD8(+) T cells in MHC class I-restricted Ag presentation assays. B16 melanoma and D2F2 Neu breast cancer growth was inhibited in mice treated with Ag-naive GIFT-21 DCs. This effect was lost in CD8(-/-) and CCR2(-/-) mice and when mice were treated with β(2)-microglobulin-deficient GIFT-21 DCs, indicating that GIFT-21 DCs migrated to and sampled from the tumors to present tumor Ags to CCL2 recruited CD8(+) T cells via MHC class I. We propose that autologous GIFT-21 DCs may serve as a cell therapy platform for the treatment of cancer.  相似文献   

14.
15.
Exosomes are 60-100-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular body fusion with the plasma membrane. Here we determined the protein and lipid compositions of highly purified human B cell-derived exosomes. Mass spectrometric analysis indicated the abundant presence of major histocompatibility complex (MHC) class I and class II, heat shock cognate 70, heat shock protein 90, integrin alpha 4, CD45, moesin, tubulin (alpha and beta), actin, G(i)alpha(2), and a multitude of other proteins. An alpha 4-integrin may direct B cell-derived exosomes to follicular dendritic cells, which were described previously as potential target cells. Clathrin, heat shock cognate 70, and heat shock protein 90 may be involved in protein sorting at multivesicular bodies. Exosomes were also enriched in cholesterol, sphingomyelin, and ganglioside GM3, lipids that are typically enriched in detergent-resistant membranes. Most exosome-associated proteins, including MHC class II and tetraspanins, were insoluble in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-containing buffers. Multivesicular body-linked MHC class II was also resistant to CHAPS whereas plasma membrane-associated MHC class II was solubilized readily. Together, these data suggest that recruitment of membrane proteins from the limiting membranes into the internal vesicles of multivesicular bodies may involve their incorporation into tetraspanin-containing detergent-resistant membrane domains.  相似文献   

16.
The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.  相似文献   

17.
Conventional treatments for autoimmune diseases have relied heavily on nonspecific immune suppressants, which possess a variety of adverse effects without inhibiting the autoimmune process in a specific manner. In the present study we demonstrate the effectiveness of antigen-specific, maturation-resistant, tolerogenic dendritic cells (DC) in suppressing collagen-induced arthritis, a murine model of rheumatoid arthritis. Treatment of DC progenitors with the NF-κB inhibiting agent LF 15-0195 (LF) resulted in a population of tolerogenic DC that are characterized by low expression of MHC class II, CD40, and CD86 molecules, as well as by poor allostimulatory capacity in a mixed leukocyte reaction. Administering LF-treated DC pulsed with keyhole limpet hemocyanin antigen to naïve mice resulted hyporesponsiveness specific for this antigen. Furthermore, administration of LF-treated DC to mice with collagen-induced arthritis resulted in an improved clinical score, in an inhibited antigen-specific T-cell response, and in reduced antibody response to the collagen. The efficacy of LF-treated DC in preventing arthritis was substantiated by histological examination, which revealed a significant decrease in inflammatory cell infiltration in the joints. In conclusion, we demonstrate that in vitro-generated antigen-specific immature DC may have important potential as a tolerogenic vaccine for the treatment of autoimmune arthritis.  相似文献   

18.
Females tend to have stronger Th1-mediated immune responses and are more prone to develop autoimmune diseases, including multiple sclerosis. Macrophages are major effector cells capable of mediating or modulating immune responses in experimental autoimmune encephalomyelitis (EAE). IL-13 and estrogen have opposing roles on macrophages (the former enhancing and the latter inhibiting) in terms of MHC class II (MHC II) up-regulation and, thus, these factors might influence susceptibility to EAE differently in females vs males. In accordance with this hypothesis, females lacking IL-13 displayed lower incidence and milder EAE disease severity than males after immunization with myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide/CFA/pertussis toxin. Female IL-13 knockout (KO) mice with EAE consistently had reduced infiltration of CD11b(+) macrophages in the CNS along with significantly reduced expression of MHC II on these cells. Impaired MHC II expression was further corroborated upon LPS stimulation of female but not male bone marrow-derived CD11b(+) macrophages from IL-13KO mice, with restored expression after IL-13 pretreatment of female but not male macrophages. APCs from IL-13KO females induced less proliferation by MOG-35-55-reactive T cells, and splenocytes from MOG peptide-immunized females had lower expression of IL-12, IFN-gamma, MIP-2, and IFN-gamma-inducible protein 10 than males. In contrast, these splenocytes had higher expression of anti-inflammatory factors, IL-10, TGF-beta1, and FoxP3, a cytokine pattern typical of regulatory type II monocytes. These data suggest that the difference in EAE susceptibility in females is strongly influenced by gender-specific proinflammatory effects of IL-13, mediated in part through up-regulation of Th1-inducing cytokines and MHC II on CD11b(+) macrophages.  相似文献   

19.
Estrogens increase aspects of innate immunity and contribute to sex differences in the prevalence of autoimmune diseases and in response to infection. The goal of the present study was to assess whether exposure to 17beta-estradiol (E2) affects the development and function of bone marrow-derived dendritic cells and to determine whether similar changes are observed in CD11c(+) splenocytes exposed to E2 in vivo. E2 facilitated the differentiation of BM precursor cells into functional CD11c(+)CD11b(+)MHC class II(+) dendritic cells (DCs) with increased expression of the costimulatory molecules CD40 and CD86. Exposure of bone marrow-derived dendritic cells to E2 also enhanced production of IL-12 in response to the TLR ligands, CpG and LPS. In contrast, CD11c(+) cells isolated from the spleens of female C57BL/6 mice that were intact, ovariectomized, or ovariectomized with E2 replacement exhibited no differences in the number or activity of CD11c(+)CD11b(+)MHC class II(+) DCs. The presence of E2 in vivo, however, increased the number of CD11c(+)CD49b(+)NK1.1(low) cells and reduced numbers of CD11c(+)CD49b(+)NK1.1(high) cells, a surface phenotype for IFN-producing killer DCs (IKDCs). Ultrastructural analysis demonstrated that CD11c(+)NK1.1(+) populations were comprised of cells that had the appearance of both DCs and IKDCs. CD11c(+) splenocytes isolated from animals with supplemental E2 produced more IFN-gamma in response to IL-12 and IL-18. These data illustrate that E2 has differential effects on the development and function of DCs and IKDCs and provide evidence that E2 may strengthen innate immunity by enhancing IFN-gamma production by CD11c(+) cells.  相似文献   

20.
The putative counterparts of human plasmacytoid pre-dendritic cells (pDCs) have been described in vivo in mouse models and very recently in an in vitro culture system. In this study, we report that large numbers of bone marrow-derived murine CD11c(+)B220(+) pDCs can be generated with Flt3 ligand (FL) as the sole exogenous differentiation/growth factor and that pDC generation is regulated in vivo by FL because FL-deficient mice showed a major reduction in splenic pDC numbers. We extensively analyzed bone marrow-derived CD11c(+)B220(+) pDCs and described their immature APC phenotype based on MHC class II, activation markers, and chemokine receptor level of expression. CD11c(+)B220(+) pDCs showed a nonoverlapping Toll-like receptor pattern of expression distinct from that of classical CD11c(+)B220(-) dendritic cells and were poor T cell stimulators. Stimulation of CD11c(+)B220(+) pDCs with oligodeoxynucleotides containing certain CpG motifs plus CD40 ligand plus GM-CSF led to increased MHC class II, CD80, CD86, and CD8alpha expression levels, to a switch in chemokine receptor expression that affected their migration, to IFN-alpha and IL-12 secretion, and to the acquisition of priming capacities for both CD4(+) and CD8(+) OVA-specific TCR-transgenic naive T cells. Thus, the in vitro generation of murine pDCs may serve as a useful tool to further investigate pDC biology as well as the potential role of these cells in viral immunity and other settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号