首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or “3h”), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb?/?) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.  相似文献   

2.
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.  相似文献   

3.
Specific inhibitors of glucosylceramide biosynthesis are used as drugs for the treatment of some human diseases correlated to glycosphingolipid metabolism. The target of the presently available inhibitors is the human glucosylceramide synthase (GCS), but effects on enzymes from other organisms have not been studied. We expressed cDNAs encoding GCS enzymes from lower animals, plants, fungi, and bacteria in the yeast P. pastoris. In vitro GCS assays with the GCS inhibitor D-threo-1-(3',4'-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol showed that this inhibitor did not affect non-human GCS enzymes.  相似文献   

4.
High glucosylceramide synthase (GCS) activity is one factor contributing to multidrug resistance (MDR) in breast cancer. Enforced GCS overexpression has been shown to disrupt ceramide-induced apoptosis and to confer resistance to doxorubicin. To examine whether GCS is a target for cancer therapy, we have designed and tested the effects of antisense oligodeoxyribonucleotides (ODNs) to GCS on gene expression and chemosensitivity in multidrug-resistant cancer cells. Here, we demonstrate that antisense GCS (asGCS) ODN-7 blocked cellular GCS expression and selectively increased the cytotoxicity of anticancer agents. Pretreatment with asGCS ODN-7 increased doxorubicin sensitivity by 17-fold in MCF-7-AdrR (doxorubicin-resistant) breast cancer cells and by 10-fold in A2780-AD (doxorubicin-resistant) ovarian cancer cells. In MCF-7 drug-sensitive breast cancer cells, asGCS ODN-7 only increased doxorubicin sensitivity by 3-fold, and it did not influence doxorubicin cytotoxicity in normal human mammary epithelial cells. asGCS ODN-7 was shown to be more efficient in reversing drug resistance than either the GCS chemical inhibitor d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or the P-glycoprotein blocking agents verapamil and cyclosporin A. Experiments defining drug transport and lipid metabolism parameters showed that asGCS ODN-7 overcomes drug resistance mainly by enhancing drug uptake and ceramide-induced apoptosis. This study demonstrates that a 20-mer asGCS oligonucleotide effectively reverses MDR in human cancer cells.  相似文献   

5.
The multidrug-resistant cancer cell lines NCI/AdR(RES) and MES-SA/DX-5 have higher glycolipid levels and higher P-glycoprotein expression than the chemosensitive cell lines MCF7-wt and MES-SA. Inhibiting glycolipid biosynthesis by blocking glucosylceramide synthase has been proposed to reverse drug resistance in MDR cells by causing an increased accumulation of proapoptotic ceramide during treatment of cells with cytotoxic drugs. We treated both multidrug-resistant cell lines with the glucosylceramide synthase inhibitors PDMP (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol), C9DGJ (N-nonyl-deoxygalactonojirimycin) or C4DGJ (N-butyl-deoxygalactonojirimycin). PDMP achieved a significant reversal of drug resistance in agreement with previous reports. However, the N-alkylated iminosugars C9DGJ and C4DGJ, which are more selective glucosylceramide synthase inhibitors than PDMP, failed to cause any reversal of drug resistance despite depleting glycolipids to the same extent as PDMP. Our results suggest that (a) inhibition of glucosylceramide synthase does not reverse multidrug resistance and (b) the chemosensitization achieved by PDMP cannot be caused by inhibition of glucosylceramide synthase alone.  相似文献   

6.
Improved inhibitors of glucosylceramide synthase.   总被引:13,自引:0,他引:13  
An inhibitor of glucosylceramide (GlcCer) synthase, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), has been reported to deplete cells and mice of their glucosphingolipids. This inhibitor has proved useful for the elucidation of the many functions of this lipid family [reviewed by Radin, N.S. & Inokuchi, J. (1991) Trends Glycosci. Glycotechnol. 3, 200-213]. In the present study, we have synthesized homologs of PDMP having different acyl chains (C6-C18) and compared their effectiveness for the inhibition of GlcCer synthase in vitro and their inhibition of GlcCer, protein, and DNA synthesis in cultured MDCK (Madin-Darby canine kidney) cells. Using MDCK homogenates and mouse brain and liver microsomes, we found that the C6 compound was relatively inactive and that the longer chain compounds did not differ much in inhibitory power. However, the use of intact MDCK cells showed that the longer chain homologs were much more effective in inhibiting GlcCer synthesis, cell growth, and incorporation of [3H]thymidine. Tests with two radioactive homologs showed that the inhibitor with a longer acyl chain was taken up much more effectively by MDCK cells and that this difference explains the much greater effectiveness of this homolog in intact cells. The inhibitors were effective when solubilized either with a nonionic detergent or with bovine serum albumin. The extent of decrease in DNA synthesis was not directly proportional to the decrease in cellular glucosylceramide, possibly because only a low level of the glycolipid is needed for DNA synthesis.  相似文献   

7.
A novel series of potent inhibitors of glucosylceramide synthase are described. The optimization of biochemical and cellular potency as well as ADME properties led to compound 23c. Broad tissue distribution was obtained following oral administration to mice. Thus 23c could be another useful tool compound for studying the effects of GCS inhibition in vitro and in vivo.  相似文献   

8.
Previous work has led to the identification of inhibitors of glucosylceramide synthase, the enzyme catalyzing the first glycosylation step in the synthesis of glucosylceramide-based glycosphingolipids. These inhibitors have two identified sites of action: the inhibition of glucosylceramide synthase, resulting in the depletion of cellular glycosphingolipids, and the inhibition of 1-O-acylceramide synthase, resulting in the elevation of cell ceramide levels. A new series of glucosylceramide synthase inhibitors based on substitutions in the phenyl ring of a parent compound, 1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), was made. For substitutions of single functional groups, the potency of these inhibitors in blocking glucosylceramide synthase was primarily dependent upon the hydrophobic and electronic properties of the substituents. An exponential relationship was found between the IC50 of each inhibitor and the sum of derived hydrophobic (pi) and electronic (sigma) parameters. This relationship demonstrated that substitutions that increased the electron-donating characteristics and decreased the lipophilic characteristics of the homologues enhanced the potency of these compounds in blocking glucosylceramide formation. A novel compound was subsequently designed and observed to be even more active in blocking glucosylceramide formation. This compound, D-threo-4'-hydroxy-P4, inhibited glucosylceramide synthase at an IC50 of 90 nM. In addition, a series of dioxane substitutions was designed and tested. These included 3',4'-methylenedioxyphenyl-, 3',4'-ethylenedioxyphenyl-, and 3'4'-trimethylenedioxyphenyl-substituted homologues. D-threo-3', 4'-Ethylenedioxy-P4-inhibited glucosylceramide synthase was comparably active to the p-hydroxy homologue. 4'-Hydroxy-P4 and ethylenedioxy-P4 blocked glucosylceramide synthase activity at concentrations that had little effect on 1-O-acylceramide synthase activity. These novel inhibitors resulted in the inhibition of glycosphingolipid synthesis in cultured cells at concentrations that did not significantly raise intracellular ceramide levels or inhibit cell growth.  相似文献   

9.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   

10.
Three analogs of the dihydroceramide desaturase inhibitor XM462 are reported. The compounds inhibit both dihydroceramide desaturase and acid ceramidase, but with different potencies depending on the N-acyl moiety. Other enzymes of sphingolipid metabolism, such as neutral ceramidase, acid sphingomyelinase, acid glucosylceramide hydrolase, sphingomyelin synthase and glucosylceramide synthase, are not affected. The effect on the sphingolipidome of the two best inhibitors, namely (R,E)-N-(1-hydroxy-4-(tridecylthio)but-3-en-2-yl)octanamide (RBM2-1B) and (R,E)-N-(1-hydroxy-4-(tridecylthio)but-3-en-2-yl)pivalamide (RBM2-1D), is in accordance with the results obtained in the enzyme assays. These two compounds reduce cell viability in A549 and HCT116 cell lines with similar potencies and both induced apoptotic cell death to similar levels than C8-Cer in HCT116 cells. The possible therapeutic implications of the activities of these compounds are discussed.  相似文献   

11.
Gaucher disease (GD), the most common lysosomal storage disorders, is caused by GBA gene mutations resulting in glycosphingolipids accumulations in various tissues, such as the brain. While suppressing glycosphingolipid accumulation is the central strategy for treating peripheral symptoms of GD, there is no effective treatment for the central nervous system symptoms. As glycosphingolipid biosynthesis starts from ceramide glycosylation by glucosylceramide synthase (GCS), inhibiting GCS in the brain is a promising strategy for neurological GD. Herein, we discovered T-036, a potent and brain-penetrant GCS inhibitor with a unique chemical structure and binding property. T-036 does not harbor an aliphatic amine moiety and has a noncompetitive inhibition mode to the substrates, unlike other known inhibitors. T-036 exhibited sufficient exposure and a significant reduction of glucosylsphingolipids in the plasma and brain of the GD mouse model. Therefore, T-036 could be a promising lead molecule for treating central nervous system symptoms of GD.

  相似文献   

12.
Deng W  Li R  Guerrera M  Liu Y  Ladisch S 《Glycobiology》2002,12(3):145-152
MEB4 murine melanoma cells synthesize G(M3) as the major ganglioside. Inhibition of G(M3) synthesis by a specific glucosylceramide synthase inhibitor resulted in reduced tumorigenicity and metastatic potential of these cells. We used a molecular approach--antisense transfection targeting the glucosylceramide synthase gene--to regulate glycosphingolipid synthesis by MEB4 cells and examine the influence on tumor formation. Antisense transfection inhibited the synthesis of the direct product of glucosylceramide synthase, glucosylceramide, and consequently G(M3) ganglioside, by MEB4 cells, reducing the concentration of G(M3) in the transfectants by up to 58%. Although neither morphology nor proliferation kinetics of the cultured cells was affected, the inhibition of glycosphingolipid synthesis and reduction of total ganglioside content caused a striking reduction in melanoma formation in mice. Only 1/60 (2%) of mice injected ID with 10(4) antisense-transfected MA173 cells formed a tumor, compared to 31/60 (52%) of mice receiving MEB4 cells and 7/15 (47%) of mice receiving the MS2 sense-transfected cells (p < 0.001 and p = 0.005, respectively). These findings demonstrate that stable transfection of glucosylceramide synthase antisense reduces cellular glycosphingolipid levels and reduces tumorigenicity, providing further experimental support for an enhancing role of gangliosides in tumor formation.  相似文献   

13.
One of the hallmarks of male germ cell development is the formation of a specialized secretory organelle, the acrosome. This process can be pharmacologically disturbed in C57BL/6 mice, and thus infertility can be induced, by small molecular sugar-like compounds (alkylated imino sugars). Here the biochemical basis of this effect has been investigated. Our findings suggest that in vivo alkylated imino sugars primarily interact with the non-lysosomal glucosylceramidase. This enzyme cleaves glucosylceramide into glucose and ceramide, is sensitive to imino sugars in vitro, and has been characterized as beta-glucosidase 2 (GBA2). Imino sugars raised the level of glucosylceramide in brain, spleen, and testis, in a dose-dependent fashion. In testis, multiple species of glucosylceramide were similarly elevated, those having long acyl chains (C16-24), as well as those with very long polyunsaturated acyl chains (C28-30:5). Both of these GlcCer species were also increased in the testes from GBA2-deficient mice. When considering that the very long polyunsaturated sphingolipids are restricted to germ cells, these results indicate that in the testis GBA2 is present in both somatic and germ cells. Furthermore, in all mouse strains tested imino sugar treatment caused a rise in testicular glucosylceramide, even in a number of strains, of which the males remain fertile after drug administration. Therefore, it appears that acrosome formation can be derailed by accumulation of glucosylceramide in an extralysosomal localization, and that the sensitivity of male germ cells to glucosylceramide is genetically determined.  相似文献   

14.
Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells.  相似文献   

15.
16.
Glucosylceramide synthase (GCS or GlcT-1), converting ceramide to glucosylceramide, is a key enzyme for the synthesis of glycosphingolipids. Due to its diverse roles in physiology and diseases, GCS may be a disease marker and drug target. Current assays for enzymes including GCS are based on reactions conducted in a test tube using enzyme preparations. Measurement of enzyme activity in laboratory-made conditions cannot directly evaluate the role of GCS in cells. Here, we introduce a new approach to determine GCS cellular activity using fluorescent NBD C6-ceramide in vivo. Cellular GCS transfers UDP-glucose to NBD C6-ceramide and produces NBD C6-glucosylceramide. C6-glucosylceramide is then separated from C6-ceramide by thin-layer chromatography and both are then quantitated by spectrophotometer. This cell-based method is able to quantitate glucosylceramide in pmol range, produced by approximately 50,000 cells or 1.0 mg tissue. This method has been used successfully to evaluate the degrees of GCS enzyme in cells and in tumors subjected to gene manipulation and chemical inhibition. These data indicate that this cell-based fluorescent method is direct, reproducible, and simple for assessing ceramide glycosylation. It is applicable to validate GCS activity in drug-resistant cancers and in other disorders.  相似文献   

17.
In plants, glucosylceramide (GlcCer) biosynthesis is poorly understood. Previous investigations suggested that sterol glucoside (SG) acts as the actual glucose donor for the plant GlcCer synthase (GCS). We addressed this question by generating a Pichia pastoris double mutant devoid of GlcCer and SG. This mutant was used for heterologous expression of the plant GCS. The activity of the GCS resulted in the accumulation of GlcCer and, surprisingly, a small proportion of SG. The synthesis of GlcCer in the transformed double mutant shows that the GCS is SG-independent, while the detection of SG suggests that in addition to the sterol glucosyltransferase, also the GCS may contribute in planta to SG biosynthesis.  相似文献   

18.
Myelosuppression and drug resistance are common adverse effects in cancer patients with chemotherapy, and those severely limit the therapeutic efficacy and lead treatment failure. It is unclear by which cellular mechanism anticancer drugs suppress bone marrow, while drug-resistant tumors survive. We report that due to the difference of glucosylceramide synthase (GCS), catalyzing ceramide glycosylation, doxorubicin (Dox) eliminates bone marrow stem cells (BMSCs) and expands breast cancer stem cells (BCSCs). It was found that Dox decreased the numbers of BMSCs (ABCG2(+)) and the sphere formation in a dose-dependent fashion in isolated bone marrow cells. In tumor-bearing mice, Dox treatments (5mg/kg, 6 days) decreased the numbers of BMSCs and white blood cells; conversely, those treatments increased the numbers of BCSCs (CD24(-)/CD44(+)/ESA(+)) more than threefold in the same mice. Furthermore, therapeutic-dose of Dox (1mg/kg/week, 42 days) decreased the numbers of BMSCs while it increased BCSCs in vivo. Breast cancer cells, rather than bone marrow cells, highly expressed GCS, which was induced by Dox and correlated with BCSC pluripotency. These results indicate that Dox may have opposite effects, suppressing BMSCs versus expanding BCSCs, and GCS is one determinant of the differentiated responsiveness of bone marrow and cancer cells.  相似文献   

19.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

20.
Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2)). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号