首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified and characterized a 17- to 18-kD Ser50-phosphorylated form of maize (Zea mays) CENTROMERIC HISTONE H3 (phCENH3-Ser50). Immunostaining in both mitosis and meiosis indicates that CENH3-Ser50 phosphorylation begins in prophase/diplotene, increases to a maximum at prometaphase-metaphase, and drops during anaphase. Dephosphorylation is precipitous (approximately sixfold) at the metaphase-anaphase transition, suggesting a role in the spindle checkpoint. Although phCENH3-Ser50 lies within a region that lacks homology to any other known histone, its closest counterpart is the phospho-Ser28 residue of histone H3 (phH3-Ser28). CENH3-Ser50 and H3-Ser28 are phosphorylated with nearly identical kinetics, but the former is restricted to centromeres and the latter to pericentromeres. Opposing centromeres separate in prometaphase, whereas the phH3-Ser28-marked pericentromeres remain attached and coalesce into a well-defined tether that binds the centromeres together. We propose that a centromere-initiated wave of histone phosphorylation is an early step in defining the two major structural domains required for chromosome segregation: centromere (alignment, motility) and pericentromere (cohesion).  相似文献   

2.
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.  相似文献   

3.
Zhang W  Lee HR  Koo DH  Jiang J 《The Plant cell》2008,20(1):25-34
The centromere in eukaryotes is defined by the presence of a special histone H3 variant, CENH3. Centromeric chromatin consists of blocks of CENH3-containing nucleosomes interspersed with blocks of canonical H3-containing nucleosomes. However, it is not known how CENH3 is precisely deposited in the centromeres. It has been suggested that epigenetic modifications of the centromeric chromatin may play a role in centromere identity. The centromeres of Arabidopsis thaliana are composed of megabase-sized arrays of a 178-bp satellite repeat. Here, we report that the 178-bp repeats associated with the CENH3-containing chromatin (CEN chromatin) are hypomethylated compared with the same repeats located in the flanking pericentromeric regions. A similar hypomethylation of DNA in CEN chromatin was also revealed in maize (Zea mays). Hypomethylation of the DNA in CEN chromatin is correlated with a significantly reduced level of H3K9me2 in Arabidopsis. We demonstrate that the 178-bp repeats from CEN chromatin display a distinct distribution pattern of the CG and CNG sites, which may provide a foundation for the differential methylation of these repeats. Our results suggest that DNA methylation plays an important role in epigenetic demarcation of the CEN chromatin.  相似文献   

4.
5.
Centromeric DNA sequences in multicellular eukaryotes are often highly repetitive and are not unique to a specific centromere or to centromeres at all. Thus, it is a major challenge to study the fine structure of individual plant centromeres. We used a DNA fiber-fluorescence in situ hybridization approach to study individual maize (Zea mays) centromeres using oat (Avena sativa)-maize chromosome addition lines. The maize centromere-specific satellite repeat CentC in the addition lines allowed us to delineate the size and organization of centromeric DNA of individual maize chromosomes. We demonstrate that the cores of maize centromeres contain mainly CentC arrays and clusters of a centromere-specific retrotransposon, CRM. CentC and CRM sequences are highly intermingled. The amount of CentC/CRM sequence varies from approximately 300 to >2800 kb among different centromeres. The association of CentC and CRM with centromeric histone H3 (CENH3) was visualized by a sequential detection procedure on stretched centromeres. The analysis revealed that CENH3 is always associated with CentC and CRM but that not all CentC or CRM sequences are associated with CENH3. We further demonstrate that in the chromosomal addition lines in which two CenH3 genes were present, one from oat and one from maize, the oat CENH3 was consistently incorporated by the maize centromeres.  相似文献   

6.
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.  相似文献   

7.
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.  相似文献   

8.
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift.  相似文献   

9.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.  相似文献   

10.
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.  相似文献   

11.
Maize centromeres are composed of CentC tandem repeat arrays, centromeric retrotransposons (CRs), and a variety of other repeats. One particularly well-conserved CR element, CRM, occurs primarily as complete and uninterrupted elements and is interspersed thoroughly with CentC at the light microscopic level. To determine if these major centromeric DNAs are part of the functional centromere/kinetochore complex, we generated antiserum to maize centromeric histone H3 (CENH3). CENH3, a highly conserved protein that replaces histone H3 in centromeres, is thought to recruit many of the proteins required for chromosome movement. CENH3 is present throughout the cell cycle and colocalizes with the kinetochore protein CENPC in meiotic cells. Chromatin immunoprecipitation demonstrates that CentC and CRM interact specifically with CENH3, whereas knob repeats and Tekay retroelements do not. Approximately 38 and 33% of CentC and CRM are precipitated in the chromatin immunoprecipitation assay, consistent with data showing that much, but not all, of CENH3 colocalizes with CentC.  相似文献   

12.
Jin W  Lamb JC  Vega JM  Dawe RK  Birchler JA  Jiang J 《The Plant cell》2005,17(5):1412-1423
The centromere of the maize (Zea mays) B chromosome contains several megabases of a B-specific repeat (ZmBs), a 156-bp satellite repeat (CentC), and centromere-specific retrotransposons (CRM elements). Here, we demonstrate that only a small fraction of the ZmBs repeats interacts with CENH3, the histone H3 variant specific to centromeres. CentC, which marks the CENH3-associated chromatin in maize A centromeres, is restricted to an approximately 700-kb domain within the larger context of the ZmBs repeats. The breakpoints of five B centromere misdivision derivatives are mapped within this domain. In addition, the fraction of this domain remaining after misdivision correlates well with the quantity of CENH3 on the centromere. Thus, the functional boundaries of the B centromere are mapped to a relatively small CentC- and CRM-rich region that is embedded within multimegabase arrays of the ZmBs repeat. Our results demonstrate that the amount of CENH3 at the B centromere can be varied, but with decreasing amounts, the function of the centromere becomes impaired.  相似文献   

13.
14.
BACKGROUND: Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved heterochromatin proteins. This centromeric heterochromatin is required for cohesion between sister centromeres. Defective heterochromatin causes premature sister chromatid separation and chromosome missegregation. The role of cis-acting DNA sequences in the formation of centromeric heterochromatin has not been established. RESULTS: A deletion strategy was used to identify centromeric sequences that allow heterochromatin formation in fission yeast. Fragments from the outer repeats are sufficient to cause silencing of an adjacent gene when inserted at a euchromatic chromosomal locus. This silencing is accompanied by the local de novo methylation of histone H3 on lysine 9, recruitment of known heterochromatin components, Swi6 and Chp1, and the provision of a new strong cohesin binding site. In addition, we demonstrate that the chromodomain of Chp1 binds to MeK9-H3 and that Chp1 itself is required for methylation of histone H3 on lysine 9. CONCLUSIONS: A short sequence, reiterated at fission yeast centromeres, can direct silent chromatin assembly and cohesin recruitment in a dominant manner. The heterochromatin formed at the euchromatic locus is indistinguishable from that found at endogenous centromeres. Recruitment of Rad21-cohesin underscores the link between heterochromatin and chromatid cohesion and indicates that these centromeric elements act independently of kinetochore activity to recruit cohesin.  相似文献   

15.
植物着丝粒结构和功能的研究进展   总被引:1,自引:0,他引:1  
佘朝文  宋运淳 《遗传》2006,28(12):1597-1606
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。  相似文献   

16.
The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g. CENP-A). Centromere-proximal regions usually correspond to sites of avid and persistent sister chromatid cohesion mediated by the conserved cohesin complex. In budding yeast, there is a substantial body of evidence indicating centromeres direct formation and/or stabilization of centromere-proximal cohesion. In other organisms, the dependency of cohesion on centromere function is not as clear. Indeed, it appears that pericentromeric heterochromatin recruits cohesion proteins independent of centromere function. Nonetheless, aspects of centromere function are impaired in the absence of sister chromatid cohesion, suggesting the two are interdependent. Here we review the nature of centromeric chromatin, the dynamics and regulation of sister chromatid cohesion, and the relationship between the two.  相似文献   

17.
18.
19.
Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56 (H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3 sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly, we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel, functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional roles in heterochromatin formation and/or maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号