首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the β-myosin heavy chain (MHC) remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events that ultimately lead to the clinical phenotype.

Principal Findings

Here we examine the structural consequences of the R403Q mutation in a recombinant smooth muscle myosin subfragment (S1), whose kinetic features have much in common with slow β-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in the presence (ADP) and absence (apo) of nucleotide by electron cryomicroscopy and image analysis. We observed that the mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe disruption of the actin-myosin interaction at the interface.

Significance

These results provide structural evidence that disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state.  相似文献   

2.
3.
A splice donorsite mutation in intron 15 of the cardiac troponin T (TnT) gene hasbeen shown to cause familial hypertrophic cardiomyopathy (HCM). In thisstudy, two truncated human cardiac TnTs expected to be produced by thismutation were expressed in Escherichiacoli and partially (50-55%) exchanged into rabbit permeabilized cardiac muscle fibers. The fibers into which a short truncated TnT, which lacked the COOH-terminal 21 amino acids because ofthe replacement of 28 amino acids with 7 novel residues, had beenexchanged generated aCa2+-activated maximum force thatwas slightly, but statistically significantly, lower than thatgenerated by fibers into which wild-type TnT had been exchanged whentroponin I (TnI) was phosphorylated by cAMP-dependent protein kinase. Along truncated TnT simply lacking the COOH-terminal 14 amino acids hadno significant effect on the maximum force-generating capability in thefibers with either phosphorylated or dephosphorylated TnI.Both these two truncated TnTs conferred a lower cooperativity and ahigher Ca2+ sensitivity on theCa2+-activated force generationthan did wild-type TnT, independent of the phosphorylation of TnI bycAMP-dependent protein kinase. The results demonstrate that the splicedonor site mutation in the cardiac TnT gene impairs the regulatoryfunction of the TnT molecule, leading to an increase in theCa2+ sensitivity, and a decreasein the cooperativity, of cardiac muscle contraction, which might beinvolved in the pathogenesis of HCM.

  相似文献   

4.
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.  相似文献   

5.
The R403Q mutation in the beta-myosin heavy chain (MHC) was the first mutation to be linked to familial hypertrophic cardiomyopathy (FHC), a primary disease of heart muscle. The initial studies with R403Q myosin, isolated from biopsies of patients, showed a large decrease in myosin motor function, leading to the hypothesis that hypertrophy was a compensatory response. The introduction of the mouse model for FHC (the mouse expresses predominantly alpha-MHC as opposed to the beta-isoform in larger mammals) created a new paradigm for FHC based on finding enhanced motor function for R403Q alpha-MHC. To help resolve these conflicting mechanisms, we used a transgenic mouse model in which the endogenous alpha-MHC was largely replaced with transgenically encoded beta-MHC. A His(6) tag was cloned at the N terminus of the alpha-and beta-MHC to facilitate protein isolation by Ni(2+)-chelating chromatography. Characterization of the R403Q alpha-MHC by the in vitro motility assay showed a 30-40% increase in actin filament velocity compared with wild type, consistent with published studies. In contrast, the R403Q mutation in a beta-MHC backbone showed no enhancement in velocity. Cleavage of the His-tagged myosin by chymotrypsin made it possible to isolate homogeneous myosin subfragment 1 (S1), uncontaminated by endogenous myosin. We find that the actin-activated MgATPase activity for R403Q alpha-S1 is approximately 30% higher than for wild type, whereas the enzymatic activity for R403Q beta-S1 is reduced by approximately 10%. Thus, the functional consequences of the mutation are fundamentally changed depending upon the context of the cardiac MHC isoform.  相似文献   

6.
Tyrosyl phosphorylation, which is controlled by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs), regulates numerous cellular processes. Altered expression and/or mutations in PTKs are linked to many forms of cancer, yet until recently little was known about the roles of PTPs in normal cells or in cancer. Earlier work established that a member of the PTP superfamily, PTEN, is an important tumor suppressor gene. We now know that at least one other PTP, the SH2 domain-containing phosphatase Shp2, is a bona fide oncogene that is mutated in several types of leukemia and hyperactivated by other mechanisms in some solid tumors. Understanding how Shp2 and other PTPs contribute to oncogenesis should provide new insights into pathogenesis and might suggest new targets for anti-neoplastic drugs.  相似文献   

7.
Familial hypertrophic cardiomyopathy is a disease characterized by left ventricular and/or septal hypertrophy and myofibrillar disarray. It is caused by mutations in sarcomeric proteins, including the ventricular isoform of myosin regulatory light chain (RLC). The E22K mutation is located in the RLC Ca(2+)-binding site. We have studied transgenic (Tg) mouse cardiac myofibrils during single-turnover contraction to examine the influence of E22K mutation on 1) dissociation time (tau(1)) of myosin heads from thin filaments, 2) rebinding time (tau(2)) of the cross bridges to actin, and 3) dissociation time (tau(3)) of ADP from the active site of myosin. tau(1) was determined from the increase in the rate of rotation of actin monomer to which a cross bridge was bound. tau(2) was determined from the rate of anisotropy change of the recombinant essential light chain of myosin labeled with rhodamine exchanged for native light chain (LC1) in the cardiac myofibrils. tau(3) was determined from anisotropy of muscle preloaded with a stoichiometric amount of fluorescent ADP. Cross bridges were induced to undergo a single detachment-attachment cycle by a precise delivery of stoichiometric ATP from a caged precursor. The times were measured in Tg-mutated (Tg-m) heart myofibrils overexpressing the E22K mutation of human cardiac RLC. Tg wild-type (Tg-wt) and non-Tg muscles acted as controls. tau(1) was statistically greater in Tg-m than in controls. tau(2) was shorter in Tg-m than in non-Tg, but the same as in Tg-wt. tau(3) was the same in Tg-m and controls. To determine whether the difference in tau(1) was due to intrinsic difference in myosin, we estimated binding of Tg-m and Tg-wt myosin to fluorescently labeled actin by measuring fluorescent lifetime and time-resolved anisotropy. No difference in binding was observed. These results suggest that the E22K mutation has no effect on mechanical properties of cross bridges. The slight increase in tau(1) was probably caused by myofibrillar disarray. The decrease in tau(2) of Tg hearts was probably caused by replacement of the mouse RLC for the human isoform in the Tg mice.  相似文献   

8.
In eukaryotes, fertilization relies on complex and specialized mechanisms that achieve the precise delivery of the male gamete to the female gamete and their subsequent union [1-4]. In flowering plants, the haploid male gametophyte or pollen tube (PT) [5] carries two nonmotile sperm cells to the female gametophyte (FG) or embryo sac [6] during a long assisted journey through the maternal tissues [7-10]. In Arabidopsis, typically one PT reaches one of the two synergids of the FG (Figure 1A), where it terminates its growth and delivers the sperm cells, a poorly understood process called pollen-tube reception. Here, we report the isolation and characterization of the Arabidopsis mutant abstinence by mutual consent (amc). Interestingly, pollen-tube reception is impaired only when an amc pollen tube reaches an amc female gametophyte, resulting in pollen-tube overgrowth and completely preventing sperm discharge and the development of homozygous mutants. Moreover, we show that AMC is strongly and transiently expressed in both male and female gametophytes during fertilization and that AMC functions in gametophytes as a peroxin essential for protein import into peroxisomes. These findings show that peroxisomes play an unexpected key role in gametophyte recognition and implicate a diffusible signal emanating from either gametophyte that is required for pollen-tube discharge.  相似文献   

9.
Cellular metabolism has been shown to regulate differentiation and function of immune cells.Tumor associated immune cells undergo phenotypic and functional alterations due to the change of cellular metabolism in tumor microenvironments.NKT cells are good candidates for immunotherapies against tumors and have been used in several clinical trials.However,the influences of tumor microenvironments on NKT cell functions remain unclear.In our studies,lactic acid in tumor microenvironments inhibited IFNγ and IL4 productions from NKT cells,and more profound influence on IFNγ was observed.By adjusting the pH of culture medium we further showed that,dysfunction of NKT cells could simply be induced by low extracellular pH.Moreover,low extracellular pH inhibited NKT cell functions by inhibiting mammalian target of rapamycin(mTOR) signaling and nuclear translocation of promyelocytic leukemia zinc-finger(PLZF).Together,our results suggest that tumor acidic microenvironments could interfere with NKT cell functions through metabolic controls.  相似文献   

10.
Ubiquinone (coenzyme Q(10) or CoQ(10)) is a lipid-soluble component of virtually all cell membranes, where it functions as a mobile electron and proton carrier. CoQ(10) deficiency is inherited as an autosomal recessive trait and has been associated with three main clinical phenotypes: a predominantly myopathic form with central nervous system involvement, an infantile encephalomyopathy with renal dysfunction, and an ataxic form with cerebellar atrophy. In two siblings of consanguineous parents with the infantile form of CoQ(10) deficiency, we identified a homozygous missense mutation in the COQ2 gene, which encodes para-hydroxybenzoate-polyprenyl transferase. The A-->G transition at nucleotide 890 changes a highly conserved tyrosine to cysteine at amino acid 297 within a predicted transmembrane domain. Radioisotope assays confirmed a severe defect of CoQ(10) biosynthesis in the fibroblasts of one patient. This mutation in COQ2 is the first molecular cause of primary CoQ(10) deficiency.  相似文献   

11.
The assembly of mitochondrial respiratory chain complex IV (cytochrome c oxidase) involves the coordinated action of several assembly chaperones. In Saccharomyces cerevisiae, at least 30 different assembly chaperones have been identified. To date, pathogenic mutations leading to a mitochondrial disorder have been identified in only seven of the corresponding human genes. One of the genes for which the relevance to human pathology is unknown is C2orf64, an ortholog of the S. cerevisiae gene PET191. This gene has previously been shown to be a complex IV assembly factor in yeast, although its exact role is still unknown. Previous research in a large cohort of complex IV deficient patients did not support an etiological role of C2orf64 in complex IV deficiency. In this report, a homozygous mutation in C2orf64 is described in two siblings affected by fatal neonatal cardiomyopathy. Pathogenicity of the mutation is supported by the results of a complementation experiment, showing that complex IV activity can be fully restored by retroviral transduction of wild-type C2orf64 in patient-derived fibroblasts. Detailed analysis of complex IV assembly intermediates in patient fibroblasts by 2D-BN PAGE revealed the accumulation of a small assembly intermediate containing subunit COX1 but not the COX2, COX4, or COX5b subunits, indicating that C2orf64 is involved in an early step of the complex IV assembly process. The results of this study demonstrate that C2orf64 is essential for human complex IV assembly and that C2orf64 mutational analysis should be considered for complex IV deficient patients, in particular those with hypertrophic cardiomyopathy.  相似文献   

12.
13.
Mutations in LMNA, which encodes A-type nuclear lamins, cause disorders of striated muscle that have as a common feature dilated cardiomyopathy. We have demonstrated an abnormal activation of both the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) branches of the mitogen-activated protein kinase signaling cascade in hearts from LmnaH222P/H222P mice that develop dilated cardiomyopathy. We previously showed that pharmacological inhibition of cardiac ERK signaling in these mice delayed the development of left ventricle dilatation and deterioration in ejection fraction. In the present study, we treated LmnaH222P/H222P mice with SP600125, an inhibitor of JNK signalling. Systemic treatment with SP600125 inhibited JNK phosphorylation, with no detectable effect on ERK. It also blocked increased expression of RNAs encoding natriuretic peptide precursors and proteins involved in the architecture of the sarcomere that occurred in placebo-treated mice. Furthermore, treatment with SP600125 significantly delayed the development of left ventricular dilatation and prevented decreases in cardiac ejection fraction and fibrosis. These results demonstrate a role for JNK activation in the development of cardiomyopathy caused by LMNA mutations. They further provide proof-of-principle for JNK inhibition as a novel therapeutic option to prevent or delay the cardiomyopathy in humans with mutations in LMNA.  相似文献   

14.
Germ cell depletion 2 (gcd2) is a chemically induced recessive mutation that causes infertility in male and female mice. The infertility is caused by germ cell depletion as early as 11.5 days post-coitum, when primordial germ cells have completed their migration to the embryonic gonads. Thus, the gcd2 mutation affects the proliferation and/or survival of germ cells after they arrive in the embryonic gonad, a developmental time when little is known about the requirements for germ cell proliferation and survival. The sterility phenotype is incompletely penetrant, has variable expressivity, and is modulated by strain background. The penetrance ranges from 37% in strain C57BL/6J to nearly 100% in CAST/EiJ. Genetic mapping localized gcd2 to a approximately 1Mb region on Chr 2. This interval contains a small number of annotated genes, of which none are known to have a role in germ cell development. Sequencing the coding regions of these genes failed to reveal a mutation, and BACs containing two of the candidate genes failed to rescue the phenotype. This raises the possibilities that the gcd2 mutation resides in non-coding sequences, and regulates genes outside the genetically defined critical region.  相似文献   

15.
Purinergic Signalling - Hypertrophic cardiomyopathy (HCM) is an inherited heart failure condition, mostly found to have genetic abnormalities, and is a leading cause of sudden death in young...  相似文献   

16.
The function of Casein kinase 2 beta (CSNK2B) in human malignancies has drawn increasing attention in recent years. However, its role in colorectal cancer (CRC) remains unclear. In the present study, we aimed to explore the expression and biological functions of CSNK2B in CRC. Public gene expression microarray data from online database and immunohistochemistry analysis demonstrated that CSNK2B was highly expressed in CRC tissues than in normal tissues. In vitro and in vivo cellular functional experiments showed that increased CSNK2B expression promoted CRC cell viability and tumorigenesis of CRC. Further western blots and rescue experiments confirmed that CSNK2B promoted CRC cell proliferation mainly by activating the mTOR signaling pathway. These findings identified CSNK2B as a novel oncogene contributing to the development of CRC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00619-1.  相似文献   

17.
Familial hypertrophic cardiomyopathy (FHC) is a genetic disorder resulting from mutations in genes encoding sarcomeric proteins. This typically induces hyperdynamic ejection, impaired relaxation, delayed early filling, myocyte disarray and fibrosis, and increased chamber end-systolic stiffness. To better understand the disease pathogenesis, early (primary) abnormalities must be distinguished from evolving responses to the genetic defect. We did in vivo analysis using a mouse model of FHC with an Arg403Gln alpha-cardiac myosin heavy chain missense mutation, and used newly developed methods for assessing in situ pressure-volume relations. Hearts of young mutant mice (6 weeks old), which show no chamber morphologic or gross histologic abnormalities, had altered contraction kinetics, with considerably delayed pressure relaxation and chamber filling, yet accelerated systolic pressure rise. Older mutant mice (20 weeks old), which develop fiber disarray and fibrosis, had diastolic and systolic kinetic changes similar to if not slightly less than those of younger mice. However, the hearts of older mutant mice also showed hyperdynamic contraction, with increased end-systolic chamber stiffness, outflow tract pressure gradients and a lower cardiac index due to reduced chamber filling; all 'hallmarks' of human disease. These data provide new insights into the temporal evolution of FHC. Such data may help direct new therapeutic strategies to diminish disease progression.  相似文献   

18.
Human mutations in PRKAG2, the gene encoding the γ2 subunit of AMP activated protein kinase (AMPK), cause a glycogen storage cardiomyopathy. In a transgenic mouse with cardiac specific expression of the Thr400Asn mutation in PRKAG2 (TGT400N), we previously reported initial cardiac hypertrophy (ages 2–8 weeks) followed by dilation and failure (ages 12–20 weeks). We sought to elucidate the molecular mechanisms of cardiac hypertrophy. TGT400N mice showed significantly increased cardiac mass/body mass ratios up to ~ 3-fold beginning at age 2 weeks. Cardiac expression of ANP and BNP were ~ 2- and ~ 5-fold higher, respectively, in TGT400N relative to wildtype (WT) mice at age 2 weeks. NF-κB activity and nuclear translocation of the p50 subunit were increased ~ 2- to 3-fold in TGT400N hearts relative to WT during the hypertrophic phase. Phosphorylated Akt and p70S6K were elevated ~ 2-fold as early as age 2 weeks. To ascertain whether these changes in TGT400N mice were a consequence of increased AMPK activity, we crossbred TGT400N with TGα2DN mice, which express a dominant negative, kinase dead mutant of the AMPK α2 catalytic subunit and have low myocardial AMPK activity. Genetic reversal of AMPK overactivity led to a reduction in hypertrophy, nuclear translocation of NF-κB, phosphorylated Akt, and p70S6K. We conclude that inappropriate activation of AMPK secondary to the T400N PRKAG2 mutation is associated with the early activation of NF-κB and Akt signaling pathway, which mediates cardiac hypertrophy.  相似文献   

19.
The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations—E344K, ΔK814, Δ2864-2865GC, Q998E, and T1046M—were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 μM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.  相似文献   

20.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号