首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synechocystis sp. PCC 6803 lacks a gene for the any known types of lycopene cyclase. Recently, we reported that Sll0659 (unknown for its function) from Synechocystis sp. PCC6803 shows similarity in sequence to a lycopene cyclase gene-CruA from Chlorobium tepidum. To test, whether sll0659 encoded protein serves as lycopene cyclase, in this study, we investigated the carotenoids of the wild types and mutants. In the sll0659 deleted mutant, there is no blockage at the lycopene cyclization step. Our results demonstrate that sll0659 does not affect lycopene cycilzation. However, the ultrastructure of mutants suggests the involvement or necessity of sll0659 in the cell division.  相似文献   

2.
3.
The sll0886 gene, controlling light-activated heterotrophic growth (LAHG), was tested for the role in regulation of phototaxis in cyanobacterium Synechocystis sp. PCC 6803. Insertional inactivation of the gene in the genome of a wild-type strain did not affect positive (toward light) or negative (away from high light) phototaxis. However, cells lost motility when sll0886 inactivation was combined with the prqRL17Q mutation, which determined negative phototaxis at low light. Immotile cells with the prqRL17Q mutation and the inactivated sll0886 gene did not display any defect in the formation of type IV pili, essential for phototaxis. Hence, the function, rather than biogenesis, of pili was affected. It was concluded that the sll0886 gene, coding for a TPR family protein, is involved in controlling negative phototaxis of cyanobacteria at the level of photoreception and signal transduction and that its role is shared with the unidentified redundant gene whose function is suppressed by the prqRL17Q mutation.  相似文献   

4.
Digalactosyldiacylglycerol (DGDG) is a typical membrane lipid of oxygenic photosynthetic organisms. Although DGDG synthase genes have been isolated from plants, no homologous gene has been annotated in the genomes of cyanobacteria and the unicellular red alga Cyanidioschyzon merolae. Here we used a comparative genomics approach and identified a non-plant-type DGDG synthase gene (designated dgdA) in Synechocystis sp. PCC6803. The enzyme produced DGDG in Escherichia coli when co-expressed with a cucumber monogalactosyldiacylglycerol synthase. A DeltadgdA knock-out mutant showed no obvious phenotype other than loss of DGDG when grown in a BG11 medium, indicating that DGDG is dispensable under optimal conditions. However, the mutant showed reduced growth under phosphate-limited conditions, suggesting that DGDG may be required under phosphate-limited conditions, such as those in natural niches of cyanobacteria.  相似文献   

5.
The role of the primary-like sigma factor SigC was studied in Synechocystis. Under high temperature stress (48 degrees C) the DeltasigC inactivation strain showed a lower survival rate than the control strain. The DeltasigC strain grew poorly at 43 degrees C in liquid cultures under normal air. However, change to 3% CO(2) enhanced growth of DeltasigC at 43 degrees C. Differences in expression of many genes related to the carbon concentrating mechanisms between the control and the DeltasigC strain were recorded with a genome-wide DNA microarray. We suggest that low solubility of CO2 at high temperature is one of the factors contributing to the poor thermotolerance of the DeltasigC strain.  相似文献   

6.
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak (<0.5 micromol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 micromol m(-2) s(-1) or above, but no growth at 0.5 micromol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence.  相似文献   

7.
Recently it has been reported that macrophages express a nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ). Using a ligand of PPARγ, troglitazone or pioglitazone, we have shown that the expression of two genes involved in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase and HMG-CoA reductase, were increased by activation of PPARγ through a PPAR response element (PPRE) in THP-1 macrophages. In addition, treatment with troglitazone significantly increased the activity of HMG-CoA reductase and the amount of intracellular cholesterol. Thus, we conclude that PPARγ and its agonists increase the cholesterol content of macrophages by the increased expression of genes involved in cholesterol biosynthesis. These findings suggest that PPARγ may play a role in cholesterol metabolism in macrophages.  相似文献   

8.
T Ogawa  E Marco    M I Orus 《Journal of bacteriology》1994,176(8):2374-2378
A high-CO2-requiring mutant, G7, of Synechocystis sp. strain PCC6803 capable of inorganic carbon transport but unable to utilize the intracellular inorganic carbon pool for photosynthesis was isolated. Transmission electron micrographs of the mutant indicated that the mutant does not have any carboxysomes. A clone (pHPG7) with a 7.5-kbp DNA insert that transforms the G7 mutant to the wild-type phenotype was isolated from a genomic library of wild-type Synechocystis sp. strain PCC6803. Complementation tests with subclones identified the mutation site in G7 within 208 bp. Sequencing of nucleotides in this region elucidated an open reading frame, designated ccmA, encoding a protein of 302 amino acids. Cloning and sequence analysis of the respective G7 gene revealed an A-to-G substitution that results in an Asp-to-Gly substitution in the deduced amino acid. The result indicated that the ccmA gene encodes a protein essential for the formation of carboxysomes. An open reading frame encoding a proline-rich protein of 271 amino acids was found downstream of the ccmA gene, but no ccm-like genes or rbc operon was found in this region.  相似文献   

9.
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ∼30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.  相似文献   

10.
Myxoxanthophyll is a carotenoid glycoside in cyanobacteria that is of unknown biological significance. The sugar moiety of myxoxanthophyll in Synechocystis sp. strain PCC 6803 was identified as dimethyl fucose. The open reading frame sll1213 encoding a fucose synthetase orthologue was deleted to probe the role of fucose and to determine the biological significance of myxoxanthophyll in Synechocystis sp. strain PCC 6803. Upon deletion of sll1213, a pleiotropic phenotype was obtained: when propagated at 0.5 micromol photons m(-2) s(-1), photomixotrophic growth of cells lacking sll1213 was poor. When grown at 40 micromol photons m(-2) s(-1), growth was comparable to that of the wild type, but cells showed a severe reduction in or loss of the glycocalyx (S-layer). As a consequence, cells aggregated in liquid as well as on plates. At both light intensities, new carotenoid glycosides accumulated, but myxoxanthophyll was absent. New carotenoid glycosides may be a consequence of less-specific glycosylation reactions that gained prominence upon the disappearance of the native sugar moiety (fucose) of myxoxanthophyll. In the mutant, the N-storage compound cyanophycin accumulated, and the organization of thylakoid membranes was altered. Altered cell wall structure and thylakoid membrane organization and increased cyanophycin accumulation were also observed for deltaslr0940K, a strain lacking zeta-carotene desaturase and thereby all carotenoids but retaining fucose. Therefore, lack of myxoxanthophyll and not simply of fucose results in most of the phenotypic effects described here. It is concluded that myxoxanthophyll contributes significantly to the vigor of cyanobacteria, as it stabilizes thylakoid membranes and is critical for S-layer formation.  相似文献   

11.
In the glucose-tolerant strain of Synechocystis sp. PCC 6803, we found two types of cells with distinct growth properties. Under photoautotrophic conditions at any light intensity, one type gave larger colonies (designated WL) than the other (designated WS). Notably, the WL cells produced much larger colonies than the WS cells at higher light intensity. In contrast, growth of the WL cells was severely suppressed under mixotrophic conditions with glucose and light, while the WS cells grew normally. A gene which could complement the WL phenotype was obtained from a wild-type genomic library. The gene, designated pmgA, coded for a 23 kDa polypeptide of 204 amino acid residues with no apparent homology to known genes. In the WL genome, the base substitution of T for C at position 193 of pmgA caused replacement of Leu with Phe at position 65 of the product. The phenotype of pmgA disruption mutants was similar to that of the WL cells, indicating that the WS cells expressed a functional pmgA product. By direct sequencing of polymerase chain reaction-amplified pmgA from genomic DNA, it was revealed as an example of microevolution that WL had expelled WS from the photoautotrophic culture of wild-type in our laboratory for a year or so. Mixed culture in liquid also demonstrated that the WL cells increased gradually under photoautotrophic conditions, while they decreased rapidly under photomixotrophic conditions. These results suggest that pmgA product is essential for photomixotrophic growth, whereas it represses photoautotrophic growth. To our knowledge, the WL cells and pmgA-disrupted mutants are the first in cyanobacteria, which shows much improved photosynthetic growth than wild-type especially at high light intensity.  相似文献   

12.
The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 was expressed in Escherichia coli, which does not contain any fatty acid desaturase. The product of the desA gene catalyzed the desaturation of fatty acids at the delta 12 position. This result demonstrates that desA is the structural gene for a delta 12 desaturase.  相似文献   

13.
Isopentenyl diphosphate isomerase (IPP isomerase) in many organisms and in plastids is central to isoprenoid synthesis and involves the conversion between IPP and dimethylallyl diphosphate (DMAPP). It is shown that Synechocystis PCC6803 is deficient in IPP isomerase activity, consistent with the absence in its genome of an obvious homologue for the enzyme. Incorporation of [1-(14)C]IPP in cell extracts, primarily into C(20), occurs only upon priming with DMAPP in Synechocystis PCC6803 and in Synechococcus PCC7942. Isoprenoid synthesis in these cyanobacteria does not appear to involve interconversion of IPP and DMAPP, raising the possibility that they are not within the plastid evolutionary lineage.  相似文献   

14.
Antibodies raised against NdhH and NdhB detected these proteins in the thylakoid membrane of Synechocystis sp. strain PCC 6803, but not in a purified cytoplasmic membrane. We conclude that NAD(P)H dehydrogenase is largely, if not exclusively, confined to the thylakoid membrane.  相似文献   

15.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

16.
Tocopherols (vitamin E) are lipid-soluble antioxidants synthesized only by photosynthetic eukaryotes and some cyanobacteria, and have been assumed to play important roles in protecting photosynthetic membranes from oxidative stress. To test this hypothesis, tocopherol-deficient mutants of Synechocystis sp. strain PCC 6803 (slr1736 and slr1737 mutants) were challenged with a series of reactive oxygen species-generating and lipid peroxidation-inducing chemicals in combination with high-light (HL) intensity stress. The tocopherol-deficient mutants and wild type were indistinguishable in their growth responses to HL in the presence and absence of superoxide and singlet oxygen-generating chemicals. However, the mutants showed enhanced sensitivity to linoleic or linolenic acid treatments in combination with HL, consistent with tocopherols playing a crucial role in protecting Synechocystis sp. strain PCC 6803 cells from lipid peroxidation. The tocopherol-deficient mutants were also more susceptible to HL treatment in the presence of sublethal levels of norflurazon, an inhibitor of carotenoid synthesis, suggesting carotenoids and tocopherols functionally interact or have complementary or overlapping roles in protecting Synechocystis sp. strain PCC 6803 from lipid peroxidation and HL stress.  相似文献   

17.
Yang Y  Yin C  Li W  Xu X 《Journal of bacteriology》2008,190(5):1554-1560
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.  相似文献   

18.
The phototactic behavior of individual cells of the cyanobacterium Synechocystis sp. strain PCC6803 was studied with a glass slide-based phototaxis assay. Data from fluence rate-response curves and action spectra suggested that there were at least two light input pathways regulating phototaxis. We observed that positive phototaxis in wild-type cells was a low fluence response, with peak spectral sensitivity at 645 and 704 nm. This red-light-induced phototaxis was inhibited or photoreversible by infrared light (760 nm). Previous work demonstrated that a taxD1 mutant (Cyanobase accession no. sll0041; also called pisJ1) lacked positive but maintained negative phototaxis. Therefore, the TaxD1 protein, which has domains that are similar to sequences found in both bacteriophytochrome and the methyl-accepting chemoreceptor protein, is likely to be the photoreceptor that mediates positive phototaxis. Wild-type cells exhibited negative phototaxis under high-intensity broad-spectrum light. This phenomenon is predominantly blue light responsive, with a maximum sensitivity at approximately 470 nm. A weakly negative phototactic response was also observed in the spectral region between 600 and 700 nm. A deltataxD1 mutant, which exhibits negative phototaxis even under low-fluence light, has a similar action maximum in the blue region of the spectrum, with minor peaks from green to infrared (500 to 740 nm). These results suggest that while positive phototaxis is controlled by the red light photoreceptor TaxD1, negative phototaxis in Synechocystis sp. strain PCC6803 is mediated by one or more (as yet) unidentified blue light photoreceptors.  相似文献   

19.
Sato H  Fujimori T  Sonoike K 《FEBS letters》2008,582(7):1093-1096
The sll1961 gene was reported to encode a regulatory factor of photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. We here show that the sll1961 gene is also essential for the phycobilisome degradation during nitrogen starvation. The defect in phycobilisome degradation was observed in the sll1961 mutant despite the increased expression of nblA, a gene involved in phycobilisome degradation during nitrogen starvation. Photosystem stoichiometry is not affected by nitrogen starvation in the sll1961 mutant nor in the wild-type. The results indicate the presence of a novel pathway for phycobilisome degradation control independent of nblA expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号