首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (μPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the ‘addition’ of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the “long-range” enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.  相似文献   

2.
The role of a prominent surface-exposed loop (residues 88-97) in the alpha domain of streptokinase (SK), in human plasminogen (HPG) activation was explored through its selective mutagenesis and deletion studies. We first made a conformationally constrained derivative of the loop by the substitution of sequences known to possess a strong propensity for beta-turn formation. The mutant so formed (termed SK(88-97-Beta Turn)), when tested for co-factor activity against substrate HPG, after first forming a 1:1 molar complex with human plasmin (HPN), showed a nearly 6-fold decreased co-factor activity compared to the wild-type, native SK. The major catalytic change was observed to be at the k(cat) level, with relatively minor changes in K(m) values against HPG. Real-time binary interaction (i.e. the 1:1 complexation between SK, or its mutant/s, with HPG), and ternary complexation studies (i.e. the docking of a substrate HPG molecule into the preformed SK-HPG complex) using Surface Plasmon Resonance were done. These studies revealed minor alterations in binary complex formation but the ternary interactions of the substitution and/or deletion mutants were found to be decreased for full-length HPG compared to that for native SK.HPG. In contrast, their ternary interactions with the isolated five-kringle domain unit of plasminogen (K1-5) showed K(d) values comparable to that seen with the native SK.HPG complex. Taking into consideration the overall alterations observed in catalytic levels after site-specific mutagenesis and complete loop deletion of the 88-97 loop, on the one hand, and its known position at the SK-HPG interface in the binary complex, suggests the importance of this loop. The present results suggest that the 88-97 loop of the alpha domain of SK contributes towards catalytic turn-over, even though its individual contribution towards enzyme-substrate affinity per se is minimal.  相似文献   

3.
The selective deletion of a discrete surface-exposed epitope (residues 254-262; 250-loop) in the beta domain of streptokinase (SK) significantly decreased the rates of substrate human plasminogen (HPG) activation by the mutant (SK(del254-262)). A kinetic analysis of SK(del254-262) revealed that its low HPG activator activity arose from a 5-6-fold increase in K(m) for HPG as substrate, with little alteration in k(cat) rates. This increase in the K(m) for the macromolecular substrate was proportional to a similar decrease in the binding affinity for substrate HPG as observed in a new resonant mirror-based assay for the real-time kinetic analysis of the docking of substrate HPG onto preformed binary complex. In contrast, studies on the interaction of the two proteins with microplasminogen showed no difference between the rates of activation of microplasminogen under conditions where HPG was activated differentially by nSK and SK(del254-262). The involvement of kringles was further indicated by a hypersusceptibility of the SK(del254-262).plasmin activator complex to epsilon-aminocaproic acid-mediated inhibition of substrate HPG activation in comparison with that of the nSK.plasmin activator complex. Further, ternary binding experiments on the resonant mirror showed that the binding affinity of kringles 1-5 of HPG to SK(del254-262).HPG was reduced by about 3-fold in comparison with that of nSK.HPG . Overall, these observations identify the 250 loop in the beta domain of SK as an important structural determinant of the inordinately stringent substrate specificity of the SK.HPG activator complex and demonstrate that it promotes the binding of substrate HPG to the activator via the kringle(s) during the HPG activation process.  相似文献   

4.
To explore the interdomain co-operativity during human plasminogen (HPG) activation by streptokinase (SK), we expressed the cDNAs corresponding to each SK domain individually (alpha, beta, and gamma), and also their two-domain combinations, viz. alphabeta and betagamma in Escherichia coli. After purification, alpha and beta showed activator activities of approximately 0.4 and 0.05%, respectively, as compared with that of native SK, measured in the presence of human plasmin, but the bi-domain constructs alphabeta and betagamma showed much higher co-factor activities (3.5 and 0.7% of native SK, respectively). Resonant Mirror-based binding studies showed that the single-domain constructs had significantly lower affinities for "partner" HPG, whereas the affinities of the two-domain constructs were remarkably native-like with regards to both binary-mode as well as ternary mode ("substrate") binding with HPG, suggesting that the vast difference in co-factor activity between the two- and three-domain structures did not arise merely from affinity differences between activator species and HPG. Remarkably, when the co-factor activities of the various constructs were measured with microplasminogen, the nearly 50-fold difference in the co-factor activity between the two- and three-domain SK constructs observed with full-length HPG as substrate was found to be dramatically attenuated, with all three types of constructs now exhibiting a low activity of approximately 1-2% compared to that of SK.HPN and HPG. Thus, the docking of substrate through the catalytic domain at the active site of SK-plasmin(ogen) is capable of engendering, at best, only a minimal level of co-factor activity in SK.HPN. Therefore, apart from conferring additional substrate affinity through kringle-mediated interactions, reported earlier (Dhar et al., 2002; J. Biol. Chem. 277, 13257), selective interactions between all three domains of SK and the kringle domains of substrate vastly accelerate the plasminogen activation reaction to near native levels.  相似文献   

5.
Although several recent studies employing various truncated fragments of streptokinase (SK) have demonstrated that the high-affinity interactions of this protein with human plasminogen (HPG) to form activator complex (SK-HPG) are located in the central region of SK, the exact location and nature of such HPG interacting site(s) is still unclear. In order to locate the "core" HPG binding ability in SK, we focused on the primary structure of a tryptic fragment of SK derived from the central region (SK143-293) that could bind as well as activate HPG, albeit at reduced levels in comparison to the activity of the native, full-length protein. Because this fragment was refractory to further controlled proteolysis, we took recourse to a synthetic peptide approach wherein the HPG interacting properties of 16 overlapping 20-mer peptides derived from this region of SK were examined systematically. Only four peptides from this set, viz., SK234-253, SK254-273, SK274-293, and SK263-282, together representing the contiguous sequence SK234-293, displayed HPG binding ability. This was established by a specific HPG-binding ELISA as well as by dot blot assay using 125I-labeled HPG. These results showed that the minimal sequence with HPG binding function resided between residues 234 and 293. None of the synthetic SK peptides was found to activate HPG, either individually or in combination, but, in competition experiments where each of the peptides was added prior to complex formation between SK and HPG, three of the HPG binding peptides (SK234-253, SK254-273, and SK274-293) inhibited strongly the generation of a functional activator complex by SK and HPG. This indicated that residues 234-293 in SK participate directly in intermolecular contact formation with HPG during the formation of the 1:1 SK-HPG complex. Two of the three peptides (SK234-253 and SK274-293), apart from interfering in SK-HPG complex formation, also showed inhibition of the amidolytic activity of free HPN by increasing the K(m) by approximately fivefold. A similar increase in K(m) for amidolysis by HPN as a result of complexation with SK has been interpreted previously to arise from the steric hinderance at or near the active site due to the binding of SK in this region. Thus, our results suggest that SK234-253 and SK274-293 also, like SK, bound close to the active site of HPN, an event that was reflected in the observed alteration in its substrate accessibility. By contrast, whereas the intervening peptide (SK254-273) could not inhibit amidolysis by free HPN, it showed a marked inhibition of the activation of "substrate" PG (human or bovine plasminogen) by activator complex, indicating that this particular region is intimately involved in interaction of the SK-HPG activator complex with substrate plasminogen during the catalytic cycle. This finding provides a rational explanation for one of the most intriguing aspects of SK action, i.e., the ability of the SK-HPG complex to catalyze selectively the activation of substrate molecules of PG to PN, whereas free HPN alone cannot do so. Taken together, the results presented in this paper strongly support a model of SK action in which the segment 234-293 of SK, by virtue of the epitopes present in residues 234-253 and 274-293, binds close to the active center of HPN (or, a cryptic active site, in the case of HPG) during the intermolecular association of the two proteins to form the equimolar activator complex; the segment SK254-273 present in the center of the core region then imparts an ability to the activator complex to interact selectively with substrate PG molecules during each PG activation cycle.  相似文献   

6.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   

7.
A kringle 5 domain fragment from human plasminogen has been investigated by 1H-NMR spectroscopy at 300 MHz and 620 MHz. The study focuses on the kringle 5 aromatic spectrum as aromatic side chains appear to mediate the binding of benzamidine. Spin-echo experiments and acid/base-titration studies in conjunction with two-dimensional double-quantum and chemical-shift-correlated spectroscopies were used to identify individual spin systems. Sequence-specific assignments of aromatic resonances are derived from direct comparison of the kringle 5 spectrum with spectra of the homologous kringle 1 and kringle 4 domains of plasminogen. As previously observed for kringles 1 and 4, the pattern we detect for Tyr9 in kringle 5 reflects a slow conformational exchange between two states in equilibrium, one in which the Tyr9 ring is freely mobile and one in which its flip dynamics are constrained. Proton Overhauser experiments in 1H2O and in 2H2O have been used to probe aromatic ring interactions and to identify residues which are part of the hydrophobic core centered at the Leu46 side chain. Overall, the data indicate a strong structural homology among the three plasminogen kringles.  相似文献   

8.
The function of lysine-binding sites in kringle domains K1-4 and K5 of plasminogen (Pg) during its activation by streptokinase (SK) was studied. Activation rates of Glu- and Lys-Pg exceed activation rate of mini- and micro-Pg 26 and 40 times, respectively. 6-Animohexanoic acid (6-AHA) in concentrations from 10(-5) to 10(-2) M inhibits activation of Glu-, Lys- and mini-Pg and does not impact the activation of micro-Pg. Complete inhibition of Lys-Pg activation occurs with presence of 10(-3) M 6-AHA while 90% inhibition of mini-Pg activation and 70% inhibition of Glu-Pg activation occur with 10(-2) M 6-AHA. Isolated kringles K1-3 and K4 of Pg inhibit activation of Glu-Pg by SK and concentrations [I]50 are 4.0 and 8.1 x 10(-6) M, respectively. Catalytic activity of Glu-Pg-SK, Lys-Pg-SK and Pm-SK complexes with respect to S 2251 is not inhibited by 6-AHA in concentrations from 10(-5) to 10(-2) M. Activation of substrate Pg by Pm-SK complex is also inhibited by 6-AHA in concentrations from 10(-5) to 10(-2) M; however, this effect of inhibition is significantly weaker than that with activation by SK. Cleavage of C-terminal Lys or chemical modification of NH2-groups of amino acid residues in SK molecule also results in the decrease of the Glu-Pg activation rate. Lysin-binding sites in K1-4 and K5 of Pg molecule are important at different steps of Pg activation process which includes formation of equimolar complex; structural reorganizations resulted in formation of active center in Pg; and binding of substrate Pg with Pg-SK complex. Lysin-binding sites in K1-4 of Pg are necessary for maintenance of high rate of Pg activation by SK.  相似文献   

9.
Streptokinase (SK) is a potent clot dissolver but lacks fibrin clot specificity as it activates human plasminogen (HPG) into human plasmin (HPN) throughout the system leading to increased risk of bleeding. Another major drawback associated with all thrombolytics, including tissue plasminogen activator, is the generation of transient thrombin and release of clot-bound thrombin that promotes reformation of clots. In order to obtain anti-thrombotic as well as clot-specificity properties in SK, cDNAs encoding the EGF 4,5,6 domains of human thrombomodulin were fused with that of streptokinase, either at its N- or C-termini, and expressed these in Pichia pastoris followed by purification and structural-functional characterization, including plasminogen activation, thrombin inhibition, and Protein C activation characteristics. Interestingly, the N-terminal EGF fusion construct (EGF-SK) showed plasmin-mediated plasminogen activation, whereas the C-terminal (SK-EGF) fusion construct exhibited ‘spontaneous’ plasminogen activation which is quite similar to SK i.e. direct activation of systemic HPG in absence of free HPN. Since HPN is normally absent in free circulation due to rapid serpin-based inactivation (such as alpha-2-antiplasmin and alpha-2-Macroglobin), but selectively present in clots, a plasmin-dependent mode of HPG activation is expected to lead to a desirable fibrin clot-specific response by the thrombolytic. Both the N- and C-terminal fusion constructs showed strong thrombin inhibition and Protein C activation properties as well, and significantly prevented re-occlusion in a specially designed assay. The EGF-SK construct exhibited fibrin clot dissolution properties with much-lowered levels of fibrinogenolysis, suggesting unmistakable promise in clot dissolver therapy with reduced hemorrhage and re-occlusion risks.  相似文献   

10.
Angiostatin protein, which comprises the first four kringle domains of plasminogen, is an endogenous inhibitor of angiogenesis that inhibits the growth of experimental primary and metastatic tumors. Truncation of Angiostatin K1-4 to K1-3 retained the activity of Angiostatin. We recombinantly expressed full-length human Angiostatin protein corresponding to the first four kringle domains of human plasminogen and a truncated form of the Angiostatin protein, kringles 1-3. Purified recombinant Angiostatin K1-3 and K1-4 proteins inhibited the formation of experimental B16-BL6 lung metastases by greater than 80% when administered at 30 nmol/kg/day. We demonstrate for the first time that Angiostatin protein, consisting of the first three kringle domains of human plasminogen, has in vivo biological activity in this assay indistinguishable from that of the full-length Angiostatin K1-4 protein and that the fourth kringle of plasminogen, when linked in sequence to K1-3, plays no direct role in the antitumor activity of Angiostatin.  相似文献   

11.
The heavy chain of tissue plasminogen activator (t-PA) consists of four domains [finger, epidermal-growth-factor (EGF)-like, kringle 1 and kringle 2] that are homologous to similar domains present in other proteins. To assess the contribution of each of the domains to the biological properties of the enzyme, site-directed mutagenesis was used to generate a set of mutants lacking sequences corresponding to the axons encoding the individual structural domains. The mutant proteins were assayed for their ability to hydrolyze artificial and natural substrates in the presence and absence of fibrin, to bind to lysine-Sepharose and to be inhibited by plasminogen activator inhibitor-1. All the deletion mutants exhibit levels of basal enzymatic activity very similar to that of wild-type t-PA assayed in the absence of fibrin. A mutant protein lacking the finger domain has a 2-fold higher affinity for plasminogen than wild-type t-PA, while the mutant that lacks both finger and EGF-like domains is less active at low concentrations of plasminogen. Mutants lacking both kringles neither bind to lysine-Sepharose nor are stimulated by fibrin. However, mutants containing only one kringle (either kringle 1 or kringle 2) behave indistinguishably from one another and from the wild-type protein. We conclude that kringle 1 and kringle 2 are equivalent in their ability to mediate stimulation of catalytic activity by fibrin.  相似文献   

12.
Human plasminogen contains structural domains that are termed kringles. Proteolytic cleavage of plasminogen yields kringles 1-3 or 4 and kringle 5 (K5), which regulate endothelial cell proliferation. The receptor for kringles 1-3 or 4 has been identified as cell surface-associated ATP synthase; however, the receptor for K5 is not known. Sequence homology exists between the plasminogen activator streptokinase and the human voltage-dependent anion channel (VDAC); however, a functional relationship between these proteins has not been reported. A streptokinase binding site for K5 is located between residues Tyr252-Lys283, which is homologous to the primary sequence of VDAC residues Tyr224-Lys255. Antibodies against these sequences react with VDAC and detect this protein on the plasma membrane of human endothelial cells. K5 binds with high affinity (Kd of 28 nm) to endothelial cells, and binding is inhibited by these antibodies. Purified VDAC binds to K5 but only when reconstituted into liposomes. K5 also interferes with mechanisms controlling the regulation of intracellular Ca2+ via its interaction with VDAC. K5 binding to endothelial cells also induces a decrease in intracellular pH and hyperpolarization of the mitochondrial membrane. These studies suggest that VDAC is a receptor for K5.  相似文献   

13.
Lin LF  Houng A  Reed GL 《Biochemistry》2000,39(16):4740-4745
Lysine side chains induce conformational changes in plasminogen (Pg) that regulate the process of fibrinolysis or blood clot dissolution. A lysine side-chain mimic, epsilon amino caproic acid (EACA), enhances the activation of Pg by urinary-type and tissue-type Pg activators but inhibits Pg activation induced by streptokinase (SK). Our studies of the mechanism of this inhibition revealed that EACA (IC(50) 10 microM) also potently blocked amidolytic activity by SK and Pg at doses nearly 10000-fold lower than that required to inhibit the amidolytic activity of plasmin. Different Pg fragments were used to assess the role of the kringles in mediating the inhibitory effects of EACA: mini-Pg which lacks kringles 1-4 of Glu-Pg and micro-Pg which lacks all kringles and contains only the catalytic domain. SK bound with similar affinities to Glu-Pg (K(A) = 2.3 x 10(9) M(-1)) and to mini-Pg (K(A) = 3.8 x 10(9) M(-)(1)) but with significantly lower affinity to micro-Pg (K(A) = 6 x 10(7) M(-)(1)). EACA potently inhibited the binding of Glu-Pg to SK (K(i) = 5.7 microM), but was less potent (K(i) = 81.1 microM) for inhibiting the binding of mini-Pg to SK and had no significant inhibitory effects on the binding of micro-Pg and SK. In assays simulating substrate binding, EACA also potently inhibited the binding of Glu-Pg to the SK-Glu-Pg activator complex, but had negligible effects on micro-Pg binding. Taken together, these studies indicate that EACA inhibits Pg activation by blocking activator complex formation and substrate binding, through a kringle-dependent mechanism. Thus, in addition to interactions between SK and the protease domain, interactions between SK and the kringle domain(s) play a key role in Pg activation.  相似文献   

14.
Analysis of complete genome sequences has made it clear that fibronectin type II (FN2) modules are present only in the vertebrate lineage, raising intriguing questions about the origin of this module type. Kringle domains display many similarities to FN2 domains; therefore it was suggested previously that they are highly divergent descendants of the same ancestral protein-fold. Since kringles are present in arthropodes, nematodes, and invertebrate chordates as well as in vertebrates, it is suggested that the FN2 domain arose in the vertebrate lineage through major structural modification of the more ancestral kringle fold. To explore this structural transition, in the present work we compare key structural features of two highly divergent kringle domains (the kringle of Caenorhabditis elegans Ror receptor tyrosine kinase and the kringle of rat neurotrypsin) with those of plasminogen kringles and FN2 domains. Our NMR conformation fingerprinting analysis indicates that characteristic (1)H-NMR markers of kringle or FN2 native folding, such as the dispersion of Trp aromatic connectivities and shifts of the Leu(46)/Thr(16) methyl signals, both decrease in the order kringles > neurotrypsin kringle > FN2 domains. These results suggest that the neurotrypsin kringle may represent an intermediate form between typical kringles and FN2 domains.  相似文献   

15.
Phylogenetic analysis of protease domains of the vertebrate plasminogen-prothrombin family revealed two major subfamilies: (1) a subfamily containing macrophage-stimulating protein (MSP), hepatocyte growth factor (HGF), plasminogen, and apolipoprotein(a) (APOA); and (2) a subfamily containing prothrombin, HGF activator, and plasminogen activators. There was evidence that these two subfamilies diverged prior to the divergence of amphibians and amniotes. The phylogeny indicated a close relationship of APOA from the European hedgehog, rhesus monkey, and human with plasminogen. Phylogenetic analysis of repeated kringle domains supported the hypothesis that APOA evolved independently in hedgehog and primates through numerous duplications of different kringle domains of the ancestral plasminogen. Phylogenies of kringle domains revealed two modes of evolution: (1) a conservative mode, whereby duplication of kringle domains occurred prior to cladogenesis and the same kringle structure has been maintained in different lineages (exemplified by plasminogen and prothrombin); and (2) a concerted mode, whereby kringle domains have duplicated since cladogenesis and thus orthologous relationships do not exist between kringles of different lineages (exemplified by APOA).  相似文献   

16.
Streptokinase may be less effective at saving lives in patients with heart attacks because it explosively generates plasmin in the bloodstream at sites distant from fibrin clots. We hypothesized that this rapid plasmin generation is due to SK's singular capacity to nonproteolytically generate the active protease SK x Pg*, and we examined whether the kringle domains regulate this process. An SK mutant lacking Ile-1 (deltaIle1-SK) does not form SK x Pg*, although it will form complexes with plasmin that can activate plasminogen. When compared to SK, deltaIle1-SK diminished the generation of plasmin in plasma by more than 30-fold, demonstrating that the formation of SK x Pg* plays an important role in SK activity in the blood. The rate of SK x Pg* formation (measured by an active site titrant) was much slower in Glu-Pg, which contains five kringle domains, than in Pg forms containing one kringle (mini-Pg) or no kringles (micro-Pg). In a similar manner, Streptococcus uberis Pg activator (SUPA), an SK-like molecule, generated SUPA x Pg* much slower with bovine Pg than bovine micro-Pg. The velocity of SK x Pg* formation was regulated by agents that influence the conformation of Pg through interactions with the kringle domains. Chloride ions, which maintain the compact Pg conformation, hindered SK x Pg* formation. In contrast, epsilon-aminocaproic acid, fibrin, and fibrinogen, which induce an extended Pg conformation, accelerated the formation of SK x Pg*. In summary, the explosive generation of plasmin in blood or plasma, which diminishes SK's therapeutic effects, is attributable to the formation of SK x Pg*, and this process is governed by kringle domains.  相似文献   

17.
Summary A computer-based statistical evaluation of the optimal alignments of the kringle domains of human plasminogen, human prothrombin, human tissue plasminogen activator, human urokinase, and human coagulation Factor XIIa, as well as the putative kringle of human haptoglobin, has been performed. A variety of different alignments has been examined and scores calculated in terms of the number of standard deviations (SD) of a given match from randomness. With the exception of human haptoglobin, it was found that very high alignment scores (8.9–23.0 SD from randomness) were obtained between each of the kringles, with the kringle 1 and kringle 5 regions of human plasminogen displaying the highest similarity, and the S kringle of human prothrombin and the human Factor XII kringle showing the least similarity. The relationships obtained were employed to construct an evolutionary tree for the kringles. The predicted alignments have also allowed nucleotide mutations in these regions to be evaluated more accurately. For those regions for which nucleotide sequences are known, we have employed the maximal alignments from the protein sequences to assess nucleotide sequence similarities. It was found that a range of approximately 40–55% of the nucleotide bases were placed at identical positions in the kringles, with the highest number found in the alignment of the two kringles of human tissue plasminogen activator and the lowest number in the alignment of the S kringle of prothrombin with the second kringle of tissue plasminogen activator. From both protein and nucleotide alignments, we conclude that haptoglobin is not statistically homologous to any other kringle.Secondary structural comparisons of the kringle regions have been predicted by a combination of the Burgess and Chou-Fasman methods. In general, the kringles display a very high number of -turns, and very low -helical contents. From analysis of the predicted structures in relationship to the functional properties of these domains, it appears as though many of their functional differences can be related to possible conformational alterations resulting from amino acid substitutions in the kringles.  相似文献   

18.
Affinity of plasminogen fragments K1, K2-3, K4 and K5 for 6-aminophenyl-Sepharose was investigated to characterize the lysine-binding sites of the protein. K1 and K5 fragments were bound to the affinity column, whereas kringle 2-3 and kringle 4 were not. The results obtained and data known from literature have indicate that two types of lysine-binding sites are present in the plasminogen molecule. Both positively and negatively charged groups of the ligand are necessary for binding with the first-type sites (K4 and K2-3). The interaction between ligands and the second-type sites localized in kringles 1 and 5 is provided by their positively charged group only.  相似文献   

19.
Angiostatin, a potent inhibitor of angiogenesis, is derived from the fibrinolytic proenzyme, plasminogen, by enzymatic processing. Plasminogen N-terminal activation peptide (PAP) is one of the products concomitantly released aside from angiostatin (kringles 1-4) and mini-plasminogen (kringle 5 plus the catalytic domain) when plasminogen is processed. To determine whether PAP alone or together with the angiostatin-related peptides derived from the processing of plasminogen modulate the proliferation and motility of endothelial cells, we have generated a recombinant PAP and used it to study its effects on endothelial cells in the presence and absence of the angiostatin-related peptides. Our results showed that PAP alone slightly increased the migration but not the proliferation of endothelial cells. However, in the presence of the angiostatin-related peptides, PAP attenuated the inhibitory activity of the angiostatin-related peptides on the proliferation and migration of endothelial cells. The inhibitory effect of PAP on the angiostatin-related peptides could be due to its binding to the kringle domains of the latter peptides.  相似文献   

20.
Phylogenetic analysis of protease domains of the vertebrate plasminogen–prothrombin family revealed two major subfamilies: (1) a subfamily containing macrophage-stimulating protein (MSP), hepatocyte growth factor (HGF), plasminogen, and apolipoprotein(a) (APOA); and (2) a subfamily containing prothrombin, HGF activator, and plasminogen activators. There was evidence that these two subfamilies diverged prior to the divergence of amphibians and amniotes. The phylogeny indicated a close relationship of APOA from the European hedgehog, rhesus monkey, and human with plasminogen. Phylogenetic analysis of repeated kringle domains supported the hypothesis that APOA evolved independently in hedgehog and primates through numerous duplications of different kringle domains of the ancestral plasminogen. Phylogenies of kringle domains revealed two modes of evolution: (1) a conservative mode, whereby duplication of kringle domains occurred prior to cladogenesis and the same kringle structure has been maintained in different lineages (exemplified by plasminogen and prothrombin); and (2) a concerted mode, whereby kringle domains have duplicated since cladogenesis and thus orthologous relationships do not exist between kringles of different lineages (exemplified by APOA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号