首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
A cis acting regulatory region has previously been identified 300-500 bp upstream of the Drosophila glue protein gene, Sgs-4. The functional capabilities of this region have now been examined by fusing it to the Drosophila Adh gene and determining the pattern of expression from the fused construct after transformation. The results show that the Sgs-4 sequences between −150 and −568 are able to direct Adh expression in late third-instar salivary glands, the appropriate tissue and timing for Sgs-4 expression. In addition, the Sgs-4 sequence elevates Adh expression in the anterior midgut and fat body, despite the fact that Sgs-4 is not normally expressed there. All three regulatory activities, tissue specificity, timing and enhancement, show the positional flexibility of enhancer elements. In addition, the Sgs-4 and Adh regulatory elements combine to direct expression in novel spatial/temporal combinations in which neither would normally be expressed.  相似文献   

12.
Ma Q  Zhou B  Pu WT 《Developmental biology》2008,323(1):98-104
Isl1 and Nkx2-5-expressing cardiovascular progenitors play pivotal roles in cardiogenesis. Previously reported Cre-based fate-mapping studies showed that Isl1 progenitors contribute predominantly to the derivatives of the second heart field, and Nkx2-5 progenitors contributed mainly to the cardiomyocyte lineage. However, partial recombination of Cre reporter genes can complicate interpretation of Cre fate-mapping experiments. We found that a Gata4-based Cre-activated reporter was recombined by Isl1Cre and Nkx2-5Cre in a substantially broader domain than previously reported using standard Cre-activated reporters. The expanded Isl1 and Nkx2-5 cardiac fate maps were remarkably similar, and included extensive contributions to cardiomyocyte, endocardial, and smooth muscle lineages in all four cardiac chambers. These data indicate that Isl1 is expressed in progenitors of both primary and secondary heart fields, and that Nkx2-5 is expressed in progenitors of cardiac endothelium and smooth muscle, in addition to cardiomyocytes. These results have important implications for our understanding of cardiac lineage diversification in vivo, and for the interpretation of Cre-based fate maps.  相似文献   

13.
Gata4 regulates the formation of multiple organs   总被引:1,自引:0,他引:1  
  相似文献   

14.
Gata4 regulates testis expression of Dmrt1   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
It has been shown that the level of expression of microtubule-associated protein 4 (MAP4) mRNAs changes throughout neonatal heart development [Chapin SJ, et al. 1995. Biochemistry 34:2289]. In the present study, both immunofluorescence and western blotting methods were used to monitor MAP4 protein expression levels in the developing heart. By both methods, it was shown that the levels of total MAP4 protein were maximal during the first postnatal week, and then declined progressively to adulthood. In addition, four major electrophoretic species that reacted with MAP4-specific antibodies (called bands 1-4) were observed in all heart tissue samples. Three of the four bands decreased in abundance throughout postnatal development, but at different rates. The fourth band remained relatively constant in abundance with increasing postnatal age. To determine if phosphorylation events might contribute to this heterogeneity, western blotting experiments using phospho-specific antibodies and phosphatase digestion of extract samples were performed. No phosphorylation-specific antibody staining was observed and no significant changes were demonstrated in the bands after phosphatase treatment, implying that the observed complexity was due mainly to alternative start site or differential isoform expression. Finally, it was discovered that cardiomyocyte MAP4 associated with drug- and cold-stable microtubules in early neonatal myocytes. Thus, the complex regulation of MAP4 protein expression may play a key role in the functional differentiation of myocyte microtubules during heart development.  相似文献   

16.
17.
18.
19.
Development of the heart requires recruitment of cardiovascular progenitor cells (CPCs) to the future heart-forming region. CPCs are the building blocks of the heart, and have the potential to form all the major cardiac lineages. However, little is known regarding what regulates CPC fate and behavior. Activity of GATA4, SMARCD3 and TBX5 - the `cardiac BAF' (cBAF) complex, can promote myocardial differentiation in embryonic mouse mesoderm. Here, we exploit the advantages of the zebrafish embryo to gain mechanistic understanding of cBAF activity. Overexpression of smarcd3b and gata5 in zebrafish results in an enlarged heart, whereas combinatorial loss of cBAF components inhibits cardiac differentiation. In transplantation experiments, cBAF acts cell autonomously to promote cardiac fate. Remarkably, cells overexpressing cBAF migrate to the developing heart and differentiate as cardiomyocytes, endocardium and smooth muscle. This is observed even in host embryos that lack endoderm or cardiac mesoderm. Our results reveal an evolutionarily conserved role for cBAF activity in cardiac differentiation. Importantly, they demonstrate that Smarcd3b and Gata5 can induce a primitive, CPC-like state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号