首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Iron incorporation into diatom biosilica was investigated for the species Stephanopyxis turris. It is known that several “foreign” elements (e.g., germanium, titanium, aluminum, zinc, iron) can be incorporated into the siliceous cell walls of diatoms in addition to silicon dioxide (SiO2). In order to examine the amount and form of iron incorporation, the iron content in the growth medium was varied during cultivation. Fe:Si ratios of isolated cell walls were measured by ICP-OES. SEM studies were performed to examine of a possible influence of excess iron during diatom growth upon cell wall formation. The chemical state of biosilica-attached iron was characterized by a combination of infrared, 29Si MAS NMR, and EPR spectroscopy. For comparison, synthetic silicagels of variable iron content were studied. Our investigations show that iron incorporation in biosilica is limited. More than 95% of biosilica-attached iron is found in the form of iron clusters/nanoparticles. In contrast, iron is preferentially dispersedly incorporated within the silica framework in synthetic silicagels leading to Si–O–Fe bond formation.  相似文献   

2.
We report a synthetic biology approach to demonstrate substrate channeling in an unusual bifunctional flavoprotein dimethylglycine oxidase. The catabolism of dimethylglycine through methyl group oxidation can potentially liberate toxic formaldehyde, a problem common to many amine oxidases and dehydrogenases. Using a novel synthetic in vivo reporter system for cellular formaldehyde, we found that the oxidation of dimethylglycine is coupled to the synthesis of 5,10-methylenetetrahydrofolate through an unusual substrate channeling mechanism. We also showed that uncoupling of the active sites could be achieved by mutagenesis or deletion of the 5,10-methylenetetrahydrofolate synthase site and that this leads to accumulation of intracellular formaldehyde. Channeling occurs by nonbiased diffusion of the labile intermediate through a large solvent cavity connecting both active sites. This central “reaction chamber” is created by a modular protein architecture that appears primitive when compared with the sophisticated design of other paradigm substrate-channeling enzymes. The evolutionary origins of the latter were likely similar to dimethylglycine oxidase. This work demonstrates the utility of synthetic biology approaches to the study of enzyme mechanisms in vivo and points to novel channeling mechanisms that protect the cell milieu from potentially toxic reaction products.  相似文献   

3.
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.  相似文献   

4.
Frustules, the silica shells of diatoms, have unique porous architectures with good mechanical strength. In recent years, biologists have learned more about the mechanism of biosilica shells formation; meanwhile, physicists have revealed their optical and microfluidic properties, and chemists have identified ways to modify them into various materials while maintaining their hierarchical structures. These efforts have provided more opportunities to use biosilica structures in microsystems and other commercial products. This review focuses on the preparation of biosilica structures and their applications, especially in the development of microdevices. We discuss existing methods of extracting biosilica from diatomite and diatoms, introduce methods of separating biosilica structures by shape and sizes, and summarize recent studies on diatom-based devices used for biosensing, drug delivery, and energy applications. In addition, we introduce some new findings on diatoms, such as the elastic deformable characteristics of biosilica structures, and offer perspectives on planting diatom biosilica in microsystems.  相似文献   

5.
The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.  相似文献   

6.
Diatoms are single‐celled microalgae that possess a nanostructured, porous biosilica shell called a frustule. This study characterized the micro‐photoluminescence (μ‐PL) emission of single living cells of the photosynthetic marine diatom Thalassiosira pseudonana in response to UV laser irradiation at 325 nm using a confocal Raman microscope. The photoluminescence (PL) spectrum had two primary peaks, one centered at 500–510 nm, which was attributed to the frustule biosilica, and a second peak at 680 nm, which was attributed to auto‐fluorescence of photosynthetic pigments. The portion of the μ‐PL emission spectrum associated with biosilica frustule in the single living diatom cell was similar to that from single biosilica frustules isolated from these diatom cells. The PL emission by the biosilica frustule in the living cell emerged only after cells were cultivated to silicon depletion. The discovery of the discovery of PL emission by the frustule biosilica within a single living diatom itself, not just its isolated frustule, opens up future possibilities for living biosensor applications, where the interaction of diatom cells with other molecules can be probed by μ‐PL spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.

Background

Inorganic mesoporous materials exhibit good biocompatibility and hydrothermal stability for cell immobilization. However, it is difficult to encapsulate living cells under mild conditions, and new strategies for cell immobilization are needed. We designed a “fish-in-net” approach for encapsulation of enzymes in ordered mesoporous silica under mild conditions. The main objective of this study is to demonstrate the potential of this approach in immobilization of living cells.

Methodology/Principal Findings

Zymomonas mobilis cells were encapsulated in mesoporous silica-based materials under mild conditions by using a “fish-in-net” approach. During the encapsulation process, polyethyleneglycol was used as an additive to improve the immobilization efficiency. After encapsulation, the pore size, morphology and other features were characterized by various methods, including scanning electron microscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy, fourier transform infrared spectroscopy, and elemental analysis. Furthermore, the capacity of ethanol production by immobilized Zymomonas mobilis and free Zymomonas mobilis was compared.

Conclusions/Significance

In this study, Zymomonas mobilis cells were successfully encapsulated in mesoporous silica-based materials under mild conditions by the “fish-in-net” approach. Encapsulated cells could perform normal metabolism and exhibited excellent reusability. The results presented here illustrate the enormous potential of the “fish-in-net” approach for immobilization of living cells.  相似文献   

8.
Sumper  M. 《Journal of phycology》2000,36(S3):64-65
Diatoms are well known for the intricate patterns of their silica-based cell walls. The complex structures of diatom cell walls are species specific and become precisely reproduced during each cell division cycle, indicating a genetic control of silica biomineralization. Therefore, the formation of the diatom cell wall has been regarded as a paradigm for controlled production of nanostructured silica. However, the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. Recently, we have shown that a set of highly cationic peptides (called silaffins) isolated from Cylindrotheca fusiformis shells are able to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Different silaffin species produce different morphologies of the precipitated silica. Silaffins contain covalently modified Lys-Lys elements. One of these lysine residues bears a novel type of protein modification, a polyamine consisting of 6–11 repeats of the N-methyl-propylamine unit. In addition to the silaffins, additional polyamine-containing substances have been isolated from a number of diatom species that may be involved in the control of biosilica morphology. Scanning electron microscopic analysis of diatom shells isolated in statu nascendi provide insights into the processes of pattern formation in biosilica. A model will be discussed that explains production of nanostructured biosilica in diatoms on the basis of these experimental results.  相似文献   

9.
Most biominerals appear to be composites of organic material and mineral. Whether biosilica is such a composite is unresolved because of a lack of evidence for such organic components. We present evidence that organic material exists within diatom biosilica and can be extracted using HF/NH4F solutions from frustules isolated from Cyclotella meneghiniana Kütz and diatomaceous earth. To eliminate organic casing on the silicified frustules as a source of organic materials, the casing was removed by oxidation of frustules with NaOCl before extraction. The removal of the casing was confirmed in that oxidized frustules no longer displayed the ability to be stained with ruthenium red and fluorescamine. Frustules examined with EDXA showed an emission peak from sulfur before treatment but no peak following treatment, indicating that oxidation removed organic sulfur. The organic material obtained from extracts of fresh frustules contained both soluble and insoluble components. Only soluble material was evident in extracts from diatomaceous earth. The soluble material appears to contain glycoproteins with relatively high levels of serine and glycine. The soluble proteins from fresh frustules also appear to be phosphorylated. Indirect evidence is presented that suggests the soluble proteins may contain regions of primary structure enriched in anionic amino acids. The soluble extracts differ from general cell contents when the two fractions are compared, suggesting that frustules contain specialized organic material. The identification of silica-specific organic material suggests that mineralization in diatoms may be in part matrix-mediated.  相似文献   

10.
The formation of SiO2-based cell walls by diatoms (a large group of unicellular microalgae) is a well established model system for the study of molecular mechanisms of biological mineral morphogenesis (biomineralization). Diatom biomineralization involves highly phosphorylated proteins (silaffins and silacidins), analogous to other biomineralization systems, which also depend on diverse sets of phosphoproteins (e.g. mammalian teeth and bone, mollusk shells, and sponge silica). The phosphate moieties on biomineralization proteins play an essential role in mineral formation, yet the kinases catalyzing the phosphorylation of these proteins have remained poorly characterized. Recent functional genomics studies on the diatom Thalassiosira pseudonana have revealed >100 proteins potentially involved in diatom silica formation. Here we have characterized the biochemical properties and biological function of one of these proteins, tpSTK1. Multiple tpSTK1-like proteins are encoded in diatom genomes, all of which exhibit low but significant sequence similarity to kinases from other organisms. We show that tpSTK1 has serine/threonine kinase activity capable of phosphorylating silaffins but not silacidins. Cell biological and biochemical analysis demonstrated that tpSTK1 is an abundant component of the lumen of the endoplasmic reticulum. The present study provides the first molecular structure of a kinase that appears to catalyze phosphorylation of biomineral forming proteins in vivo.  相似文献   

11.
The cell wall (frustule) of the freshwater diatom Pinnularia viridis (Nitzsch) Ehrenberg is composed of an assembly of highly silicified components and associated organic layers. We used atomic force microscopy (AFM) to investigate the nanostructure and relationship between the outermost surface organics and the siliceous frustule components of live diatoms under natural hydrated conditions. Contact mode AFM imaging revealed that the walls were coated in a thick mucilaginous material that was interrupted only in the vicinity of the raphe fissure. Analysis of this mucilage by force mode AFM demonstrated it to be a nonadhesive, soft, and compressible material. Application of greater force to the sample during repeated scanning enabled the mucilage to be swept from the hard underlying siliceous components and piled into columns on either side of the scan area by the scanning action of the tip. The mucilage columns remained intact for several hours without dissolving or settling back onto the cleaned valve surface, thereby revealing a cohesiveness that suggested a degree of cross-linking. The hard silicified surfaces of the diatom frustule appeared to be relatively smooth when living cells were imaged by AFM or when field-emission SEM was used to image chemically cleaned walls. AFM analysis of P. viridis frustules cleaved in cross-section revealed the nanostructure of the valve silica to be composed of a conglomerate of packed silica spheres that were 44.8 ± 0.7 nm in diameter. The silica spheres that comprised the girdle band biosilica were 40.3 ± 0.8 nm in diameter. Analysis of another heavily silicified diatom, Hantzschia amphioxys (Ehrenberg) Grunow, showed that the valve biosilica was composed of packed silica spheres that were 37.1 ± 1.4 nm and that silica particles from the girdle bands were 38.1 ± 0.5 nm. These results showed little variation in the size range of the silica particles within a particular frustule component (valve or girdle band), but there may be differences in particle size between these components within a diatom frustule and significant differences are found between species.  相似文献   

12.
The eukaryotic diatoms are unicellular algae. They are well known for their filigree micro- and nanostructured cell walls which mainly consist of amorphous silica as well as various organic compounds. However, diatoms are also known to incorporate certain amounts of aluminium into their cell walls. Unexpectedly, enhanced Al concentrations in the Southern Yellow Sea were found to be correlated with a diatom spring bloom. Therefore, we have analyzed the influence of strongly enhanced Al concentrations in the culture medium upon the growth behaviour of the diatom Stephanopyxis turris (S. turris). The uptake and incorporation of Al into the cell walls was monitored. It turned out that S. turris survives aluminium concentrations up to 105.5 μM (2.85 mg/l) in the culture medium. Under the applied conditions, this corresponds to an Al/Si ratio of 1:1. These large amounts of Al had to be offered in the form of bis–tris-chelates in order to prevent uncontrolled precipitation. Under these conditions, the Al/Si ratio in the cell walls could be increased up to about 1:15 as determined by ICP-OES, the highest amount of aluminium found in diatom cell walls yet. Structural characterization of the biosilica by ATR-FTIR and solid-state 27Al NMR spectroscopy revealed that an amorphous aluminosilicate phase is formed where the aluminium exists as four- and sixfold-coordinated species.  相似文献   

13.
Biosilica from diatoms is formed at ambient conditions under the control of biological and physicochemical processes. The changes in growth and biosilica formation through uptake of different concentrations of Cd2+ by the diatom Nitzschia palea (Kützing) W. Smith was investigated, correlating Cd2+ effects to changes in the biosilica nanostructure and the relative content of the encapsulated biomolecules. Diatom growth rates at different Cd2+ concentrations (as 1, 2, 3, 4, and 5 × 10?1 mg L?1 CdCl2) were studied in order to determine the concentrations at which sublethal effects were visible, allowing the harvest of sufficient diatom cells for further experiments. We found a clear correlation between the Cd2+ concentrations and both the nanostructure of the biosilica and content of encapsulated peptides. Cd2+ induced biosilica deformation was assessed by scanning electron microscopy and attenuated total reflectance‐Fourier Transformed Infrared Spectroscopy (FTIR), revealing that micromorphological changes in frustule features (striae, costae, pores) and nanostructural modifications (structure of the silica and conformation of the encapsulated peptides) occurred at applied Cd2+ concentrations of 2 and 3 × 10?1 mg L?1. In particular the FTIR contribution of peptides decreased at elevated Cd2+ concentrations, whereas shifts in wave number of several relevant organic bonds as C = O stretching (1765 cm?1) and possibly hydrated sulfate (1160, 1110 and 980 cm?1) were assigned. Additional analysis of the amide I band showed a relative increase in β‐sheet structure (1680–1620 cm?1) when Cd2+ concentration increased. Cadmium uptake clearly affected the molecular ordering of the biosilica in Nitzschia palea, most probably by interfering in biological or physicochemical processes involved in diatom biosilicification.  相似文献   

14.
We experimentally demonstrate an ultra‐sensitive immunoassay biosensor using diatom biosilica with self‐assembled plasmonic nanoparticles. As the nature‐created photonic crystal structures, diatoms have been adopted to enhance surface plasmon resonances of metal nanoparticles on the surfaces of diatom frustules and to increase the sensitivity of surface‐enhanced Raman scattering (SERS). In this study, a sandwich SERS immunoassay is developed based on the hybrid plasmonic‐biosilica nanostructured materials that are functionalized with goat anti‐mouse IgG. Our experimental results show that diatom frustules improve the detection limit of mouse IgG to 10 pg/mL, which is ?100× better than conventional colloidal SERS sensors on flat glass.

Ultra‐sensitive immunoassay biosensor using diatom biosilica with self‐assembled plasmonic nanoparticles.  相似文献   


15.
Journal of Applied Phycology - Silica polycondensation occurring in diatom organelles called silica deposition vesicles (SDVs) leads to valve and girdle band formation to complete the biosilica...  相似文献   

16.

Background

Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides.

Methodology/Principal Findings

We describe a “genome-to-lead” approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D1-like (Gαs-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC50 = 5.8±1.5 nM) and norepinephrine (EC50 = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as “hits,” and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D1 dopamine receptor (hD1) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as “leads” for insecticide discovery.

Conclusions/Significance

This research provides a “proof-of-concept” for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.  相似文献   

17.
Nodal Morphogens     
Nodal signals belong to the TGF-β superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left–right axis. Nodal signals can act as morphogens—they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction–diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-β signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.In his 1901 book “Regeneration,” Thomas Hunt Morgan speculated that “if we suppose the materials or structures that are characteristic of the vegetative half are gradually distributed from the vegetative to the animal half in decreasing amounts, then any piece of the egg will contain more of these things at one pole than the other” and “gastrulation depends on the relative amounts of the materials in the different parts of the blastula” (Morgan 1901). Although Morgan’s speculations referred to the sea urchin embryo, they foretold our current understanding of morphogen gradients in frog and fish development. Morgan’s “materials,” “structures,” and “things” are the Nodal signals that create a vegetal-to-animal activity gradient to regulate germ layer formation and patterning. This article discusses how Nodal signaling provides positional information to fields of cells. I first portray the components of the signaling pathway and describe the role of Nodal signals in mesendoderm induction and left–right axis specification. I then discuss how Nodal morphogen gradients are thought to be generated, modulated, and interpreted.  相似文献   

18.
The absence of pentose-utilizing enzymes in Saccharomyces cerevisiae is an obstacle for efficiently converting lignocellulosic materials to ethanol. In the present study, the genes coding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) from Pichia stipitis were successfully engineered into S. cerevisae. As compared to the control transformant, engineering of XYL1 and XYL2 into yeasts significantly increased the microbial biomass (8.1 vs. 3.4 g/L), xylose consumption rate (0.15 vs. 0.02 g/h) and ethanol yield (6.8 vs. 3.5 g/L) after 72 h fermentation using a xylose-based medium. Interestingly, engineering of XYL1 and XYL2 into yeasts also elevated the ethanol yield from sugarcane bagasse hydrolysate (SUBH). This study not only provides an effective approach to increase the xylose utilization by yeasts, but the results also suggest that production of ethanol by this recombinant yeasts using unconventional nutrient sources, such as components in SUBH deserves further attention in the future.  相似文献   

19.
The Gene Encoding the Phosphatidylinositol Transfer Protein Is Essential for Cell Growth (Aitken, J. F., van Heusden, G. P., Temkin, M., and Dowhan, W. (1990) J. Biol. Chem. 265, 4711–4717)A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein (Bogdanov, M., Sun, J., Kaback, H. R., and Dowhan, W. (1996) J. Biol. Chem. 271, 11615–11618)William Dowhan''s curiosity about the connections between phospholipids and proteins associated with them goes back as far as his days as a graduate student with Esmond Snell at the University of California, Berkeley. In these two JBC Classics, his group''s ability to manipulate biochemical and molecular genetics tools to answer fundamental questions about lipid biology shines through. “William Dowhan and his research group have made many contributions to the biochemistry of phospholipid metabolism and membrane biogenesis,” says Robert Simoni at Stanford University.Open in a separate windowBill Dowhan (right) is shown here with the late Chris Raetz (left), who was a longtime collaborator and friend, and his former postdoctoral advisor, the late Gene Kennedy, on the occasion of Kennedy''s 90th birthday in 2009 (photo courtesy of William Dowhan).The first paper, published in 1990, documented the importance of phosphatidylinositol/phosphatidylcholine transfer proteins in vivo. Dowhan''s group, which has been based at the University of Texas Medical School since 1972, used a combination of biochemistry and genetics to clone the protein''s gene. Dowhan had first heard of phospholipid transfer proteins in 1969, when he began his postdoctoral training with Eugene (Gene) Kennedy at Harvard Medical School. At his very first Kennedy lab meeting, the discussion centered around a publication that had just come out (1). The paper described “one of the first observations of proteins in the soluble phase that transferred lipids between bilayers,” recalls Dowhan. “No one could figure out what these proteins really did in vivo, but they knew the proteins had this function” of transferring lipids between membranes.As he moved through his career, Dowhan focused on cloning and characterizing genes and purifying enzymes responsible for phospholipid metabolism in Escherichia coli. Then came a sabbatical in 1983 with Gottfried (Jeff) Schatz at the Biozentrum of the University of Basel in Switzerland, that expanded Dowhan''s research directions into yeast genetics. He says the opportunity to work with Schatz “got me into the possibility of looking for this phosphatidylinositol/phosphatidylcholine transfer protein (PI-TP) in yeast, which I probably would have never done if I hadn''t taken this sabbatical.”Fresh from his sabbatical, Dowhan started tracking down the protein and its gene in vivo. “I submitted a grant at that time with some preliminary data that we had begun to purify to homogeneity the PI-TP from yeast, which had never been done before. Fortunately, we got the grant,” he says.The Dowhan group managed to purify PI-TP from yeast. “The most important part was using basic biochemistry and understanding how to purify proteins before the advent of genetically tagging proteins for affinity chromatography,” explains Dowhan.For the next step in the process of finding the gene for the protein, Dowhan and colleagues had to apply reverse genetics because the yeast genome was not available in the late 1980s. They sequenced the amino terminus of the protein, made the corresponding oligonucleotide probes, tested yeast cDNA libraries with those probes, and pulled out the gene. “We still didn''t know the role PI-TP played in cell function. But now we had the sequence of the gene and the knock-out mutant was not viable,” notes Dowhan. “So we published” the findings.At the same time, Vytas Bankaitis, now at the University of North Carolina, had been working on cloning the SEC14 gene in yeast, which is necessary for vesicular transport. “It turns out we had missed the DNA sequence,” Dowhan says. From Bankaitis'' work, it was obvious that “PI-TP was the product of the SEC14 gene. It all came together in a joint report in Nature. Now we had a function associated with the SEC14 gene, which we didn''t have before,” Dowhan explains (2). “We had a phenotype of a mutant lacking this phospholipid transfer protein, which then stopped vesicular transport.”This initial link between phospholipid metabolism and vesicular transport opened up the field to characterization of the Sec14 protein superfamily in a broad range of biological systems. These proteins contain lipid-binding domains, which sense membrane lipid composition and integrate lipid metabolism and lipid-mediated signaling with an array of cellular processes.The second JBC Classic focused on a different feature of phospholipids: their role in protein folding. Dowhan was fascinated by membrane proteins ever since he was a graduate student and had gone to the Kennedy laboratory as a postdoctoral fellow, intending to purify the membrane component expressed by the lac operon for lactose transport in E. coli. He was unsuccessful because, at that time, the necessary detergents were not available. Once the lactose permease was purified (3), Dowhan noticed in the literature that other researchers mentioned that when the protein was reconstituted in liposomes missing phosphatidylethanolamine, the protein was defective in energy-dependent uphill transport. Dowhan recalls that he wondered, “Was that an artifact of the liposome system or was that also true in vivo?”To get to the bottom of this observation, Dowhan''s group used E. coli to generate null mutants of what were considered to be absolutely essential genes for phospholipid synthesis and cell viability. They created a null mutant of the pssA gene, which encodes the committed step to the synthesis of the major phospholipid, phosphatidylethanolamine. By establishing conditions in which bacterial cells lacking phosphatidylethanolamine remained viable, the investigators were able to identify and characterize different cell phenotypes caused by the missing phospholipid both in vivo and in vitro. In collaboration with Ronald Kaback at UCLA, Dowhan''s group showed that phosphatidylethanolamine was essential for the proper folding of an epitope of lactose permease that was also necessary to support the energy-dependent uphill transport of lactose. “Studies by others have since shown a similar chaperone role for lipids in other bacteria, plants and mammalian cells,” notes Simoni.To obtain their data, the investigators developed a new technique, the Eastern-Western blot. In this method, membrane proteins were delipidated and partially denatured by SDS. The proteins underwent gel electrophoresis and then were transferred to a solid support by Western blotting. A series of individual lipids were then laid over the proteins at a 90° angle so that the investigators could see, after incubating with conformation-specific antibodies, which lipids helped which membrane proteins regain proper conformation.This technique was used to establish that phosphatidylethanolamine was necessary in a late step of folding of lactose permease, but was not necessary to maintain the final folded state. This observation suggested that lipids act as molecular chaperones in helping protein maturation. “This paper set the stage for understanding how lipids affect the topological organization of wild-type proteins in the membrane,” notes Dowhan.Dowhan and his collaborator Mikhail Bogdanov have continued using bacterial mutants in phospholipid metabolism to systematically manipulate the native membrane lipid compositions during the cell cycle. They have analyzed the transmembrane domain orientation of membrane proteins to establish the molecular basis for lipid-dependent organization of lactose permease and other secondary transporters (4).Dowhan says his work has two take-home messages. One is that “Lipids aren''t just glorified biological detergents,” he says. “They have specific roles” in the cell. The other message is in the power of numbers. Dowhan says the more techniques applied to solve a biological mystery, the more likely the mystery will be successfully solved.  相似文献   

20.
Global photosynthetic productivity is limited by the enzymatic assimilation of CO2 into organic carbon compounds. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the carboxylating enzyme of the Calvin-Benson cycle, poorly discriminates between CO2 and O2, leading to photorespiration and the loss of fixed carbon and nitrogen. With the advent of synthetic biology, it is now feasible to design, synthesize, and introduce biochemical pathways in vivo. We engineered a synthetic photorespiratory bypass based on the 3-hydroxypropionate bi-cycle into the model cyanobacterium, Synechococcus elongatus sp. PCC 7942. The heterologously expressed cycle is designed to function as both a photorespiratory bypass and an additional CO2-fixing pathway, supplementing the Calvin-Benson cycle. We demonstrate the function of all six introduced enzymes and identify bottlenecks to be targeted in subsequent bioengineering. These results have implications for efforts to improve photosynthesis and for the “green” production of high value products of biotechnological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号