首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anagenetic speciation is an important mode of speciation in oceanic islands; one-fourth of the endemic plants are estimated to have been derived via this process. Few studies, however, have critically examined the genetic consequences of anagenesis in comparison with cladogenesis (involved with adaptive radiation). We hypothesize that endemic species originating via anagenetic speciation in a relatively uniform environment should accumulate genetic variation with limited populational differentiation. We undertook a population genetic analysis using nine nuclear microsatellite loci of Acer takesimense, an anagenetically derived species endemic to Ullung Island, Korea, and its continental progenitor A. pseudosieboldianum on the Korean Peninsula. Microsatellite data reveal a clear genetic distinction between the two species. A high F value in the cluster of A. takesimense was found by Bayesian clustering analysis, suggesting a strong episode of genetic drift during colonization and speciation. In comparison with A. pseudosieboldianum, A. takesimense has slightly lower genetic diversity and possesses less than half the number of private and rare alleles. Consistent with predictions, weak geographical genetic structure within the island was found in A. takesimense. These results imply that anagenetic speciation leads to a different pattern of specific and genetic diversity than often seen with cladogenesis.  相似文献   

2.

Background and Aims

The Mediterranean Basin is one of the most important regions for the Earth''s plant biodiversity; however, the scarcity of studies on fine scale patterns of genetic variation in this region is striking. Here, an assessment is made of the spatial genetic structure of all known locations of the three Sardinian endemic species of Aquilegia in order to determine the relative roles of gene flow and genetic drift as underlying evolutionary forces canalizing the divergence of Sardinian Aquilegia taxa, and to see if the spatial genetic structure found fits the current taxonomic differentiation of these taxa.

Methods

DNA from 89 individuals from all known locations of Aquilegia across Sardinia was analysed by means of amplified fragment length polymorphism (AFLP) markers. Both principal co-ordinates analysis (PCoA) and Bayesian clustering analyses were used to determine the spatial genetic structure irrespective of any taxonomic affiliation. Historical effects of gene flow and genetic drift were assessed by checking for the existence of isolation-by-distance patterns.

Key Results

STRUCTURE and PCoA analyses revealed a pattern of genetic variation geographically structured into four spatial genetic groups. No migration–drift equilibrium was detected for Aquilegia in Sardinia, when analysed either as a whole or in individual groups. The scenario approached a Case III pattern sensu Hutchinson and Templeton, which is associated with extreme isolation conditions where genetic drift has historically played a dominant role over gene flow.

Conclusions

The pattern of genetic variation of Sardinian taxa of Aquilegia indicates that genetic drift has been historically more influential than gene flow on population structure of Sardinian species of Aquilegia. Limited seed dispersal and divergent selection imposed by habitat conditions have been probably the main causes reinforcing post-Pleistocene geographical isolation of Aquilegia populations. The spatial genetic structure found here is not fully compatible with current taxonomic affiliations of Sardinian Aquilegia taxa. This is probably a consequence of the uncoupling between morphological and genetic patterns of differentiation frequently found in recently radiated taxa.  相似文献   

3.

Background and Aims

Interspecific gene flow can occur in many combinations among species within the genus Quercus, but simultaneous hybridization among more than two species has been rarely analysed. The present study addresses the genetic structure and morphological variation in a triple hybrid zone formed by Q. hypoleucoides, Q. scytophylla and Q. sideroxyla in north-western Mexico.

Methods

A total of 247 trees from ten reference and 13 presumed intermediate populations were characterized using leaf shape variation and geometric morphometrics, and seven nuclear microsatellites as genetic markers. Discriminant function analysis was performed for leaf shape variation, and estimates of genetic diversity and structure, and individual Bayesian genetic assignments were obtained.

Key Results

Reference populations formed three completely distinct groups according to discriminant function analysis based on the morphological data, and showed low, but significant, genetic differentiation. Populations from the zone of contact contained individuals morphologically intermediate between pairs of species in different combinations, or even among the three species. The Bayesian admixture analysis found that three main genetic clusters best fitted the data, with good correspondence of reference populations of each species to one of the genetic clusters, but various degrees of admixture evidenced in populations from the contact area.

Conclusions

The three oak species have formed a complex hybrid zone that is geographically structured as a mosaic, and comprising a wide range of genotypes, including hybrids between different species pairs, backcrosses and probable triple hybrids.  相似文献   

4.

Background and Aims

In the Mediterranean basin, the Italian peninsula has been suggested to be one of the most important glacial refugia for temperate tree species. The orchid genus Epipactis is widely represented in the Italian peninsula by widespread species and several endemic, localized taxa, including selfing and outcrossing taxa. Here the phylogenetic and phylogeographic relationships in a group of closely related taxa in Epipactis are investigated with the aim of understanding the role of this refugial area for cladogenesis and speciation in herbaceous species, such as terrestrial orchids.

Methods

Ribosomal DNA (rDNA) was employed to assess phylogenetic relationships, and plastid sequence variation in the rbcLaccD spacer was used to reveal phylogeographic patterns among plastid haplotypes using a parsimony network.

Key Results

Low genetic variation and shared ribotypes were detected in rDNA, whereas high levels of sequence variation and a strong phylogeographic structure were found in the examined plastid region. The parsimony plastid haplotype network identified two main haplotype groups, one including E. atrorubens/microphylla/muelleri/leptochila and the other including all accessions of E. helleborine and several localized and endemic taxa, with a combination of widespread and rare haplotypes detected across the Italian peninsula. A greater genetic divergence separated the Italian and other European accessions of E. helleborine.

Conclusions

Phylogenetic and phylogeographic patterns support a working hypothesis in which the Italian peninsula has only recently been colonized by Epipactis, probably during the most recent phase of the Quaternary age and, nevertheless, it acted as a remarkable centre of diversification for this orchid lineage. Changes in pollination strategy and recurrent shifts in mating system (from allogamy to autogamy) could have represented the mechanism promoting this rapid diversification and the observed high taxonomic complexity detected in the E. helleborine species complex.  相似文献   

5.
Two major modes of speciation, i.e., cladogenesis and anagenesis, have often been used to explain the generation of distinct plant diversity on oceanic islands. Anagenetic speciation is of particular interest to plant endemics on Ulleung Island, Korea because, of nearly 40 endemics, approximately 88% or even all endemic species are thought to be anagenetically derived. Despite its important role in Ulleung Island, the full scope of the anagenetic speciation and the genetic consequences of this speciation mode have been limited to a very few families (i.e., Apiaceae, Sapindaceae, and Ranunculaceae). Based on extensive sampling (a total of 322 individuals) and trnL-F cpDNA noncoding sequences, we conducted phylogenetic and haplotype network analyses for the species pair of Rubus crataegifolius (continental progenitor)-R. takesimensis (insular derivative). Rubus takesimensis on Ulleung Island is not a monophyletic group, suggesting at least two independent introductions from geographically and genetically divergent source populations. No significant reduction in cpDNA haplotype diversity and genetic differentiation in R. takesimensis are consistent with expectations from the anagenetically derived species. A further study based on comprehensive sampling and more variable molecular markers will shed light into the genetic consequences of anagenetic speciation in Rubus on Ulleung Island.  相似文献   

6.

Background and Aims

Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal.

Methods

Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos.

Key Results

A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species.

Conclusions

The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.  相似文献   

7.

Background and Aims

Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands.

Methods

Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale.

Key Results

Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure.

Conclusions

Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.  相似文献   

8.

Background and Aims

Intraspecific ploidy-level variation is an important aspect of a species'' genetic make-up, which may lend insight into its evolutionary history and future potential. The present study explores this phenomenon in a group of eastern Asian Cardamine species.

Methods

Plant material was sampled from 59 localities in Japan and Korea, which were used in karyological (chromosome counting) and flow cytometric analyses. The absolute nuclear DNA content (in pg) was measured using propidium iodide and the relative nuclear DNA content (in arbitrary units) was measured using 4,6-diamidino-2-phenylindole fluorochrome.

Key Results

Substantial cytotype diversity was found, with strikingly different distribution patterns between the species. Two cytotypes were found in C. torrentis sensu lato (4x and 8x, in C. valida and C. torrentis sensu stricto, respectively), which displays a north–south geographical pattern in Japan. Hypotheses regarding their origin and colonization history in the Japanese archipelago are discussed. In Korean C. amaraeiformis, only tetraploids were found, and these populations may in fact belong to C. valida. C. yezoensis was found to harbour as many as six cytotypes in Japan, ranging from hexa- to dodecaploids. Ploidy levels do not show any obvious geographical pattern; populations with mixed ploidy levels, containing two to four cytotypes, are frequently observed throughout the range. C. schinziana, an endemic of Hokkaido, has hexa- and octoploid populations. Previous chromosome records are also revised, showing that they are largely based on misidentified material or misinterpreted names.

Conclusions

Sampling of multiple populations and utilization of the efficient flow cytometric approach allowed the detection of large-scale variation in ploidy levels and genome size variation attributable to aneuploidy. These data will be essential in further phylogenetic and evolutionary studies.  相似文献   

9.

Background and Aims

Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations.

Methods

Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers.

Key Results

As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions.

Conclusions

This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts.  相似文献   

10.

Background and Aims

It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean.

Methods

The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck.

Key Results

Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years.

Conclusions

As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement.  相似文献   

11.

Background and Aims

Understanding the factors that shape variation in genetic diversity across the geographic ranges of species is an important challenge in the effort to conserve evolutionary processes sustaining biodiversity. The historical influences leading to a central–marginal organization of genetic diversity have been explored for species whose range is known to have expanded from refugia after glacial events. However, this question has rarely been addressed for Mediterranean endemic plants of azonal habitats such as rocky slopes or screes. In this context, this comprehensive study examined molecular and field data from Arenaria provincialis (Caryophyllaceae), a narrow endemic plant of south-eastern France.

Methods

Across the whole geographic range, an investigation was made of whether high levels of abundance and genetic diversity (estimated from amplified fragment length polymorphism markers) are centrally distributed, to evaluate the relevance of the central–marginal hypothesis. Phylogeographic patterns inferred from chloroplast DNA (cpDNA) were used, applying Bayesian methods to test the influence of past biogeographic events. Multivariate analysis combining phylogeographic and ecological data was used to reveal the historical and ecological distinctiveness of populations.

Key Results

Despite the narrow distribution of A. provincialis, a high level of nucleotide variation is found within cpDNA loci, supporting its persistence throughout the Pleistocene period. The area characterized by the highest genetic diversity is centrally located. Structured phylogeography and Bayesian factor analysis supported the hypothesis that the central area of the distribution was the source of both westward and eastward migrations, probably during arid periods of the Pleistocene, and more recently was a crossroads of backward migrations. By contrast, the two areas located today at the range limits are younger, have reduced genetic diversity and are marginal in the ecological gradients.

Conclusions

This study highlights a case of strong population distinctiveness within a narrow range. Phylogeography sheds light on the historical role of the areas centrally situated in the distribution. The current range size and abundance patterns are not sufficient to predict the organization of genetic diversity.  相似文献   

12.

Background and Aims

In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain.

Methods

Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant.

Key Results

Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario.

Conclusions

Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.  相似文献   

13.
Li QQ  Zhou SD  He XJ  Yu Y  Zhang YC  Wei XQ 《Annals of botany》2010,106(5):709-733

Background and Aims

The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny.

Methods

Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA).

Key Results

Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia.

Conclusions

Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections.  相似文献   

14.

Background and Aims

In the Mascarenes, a young oceanic archipelago composed of three main islands, the Dombeyoideae (Malvaceae) have diversified extensively with a high endemism rate. With the exception of the genus Trochetia, Mascarene Dombeyoideae are described as dioecious whereas Malagasy and African species are considered to be monocline, species with individuals bearing hermaphrodite/perfect flowers. In this study, the phylogenetic relationships were reconstructed to clarify the taxonomy, understand the phylogeographic pattern of relationships and infer the evolution of the breeding systems for the Mascarenes Dombeyoideae.

Methods

Parsimony and Bayesian analysis of four DNA markers (ITS, rpl16 intron and two intergenic spacers trnQ-rsp16 and psbM-trnD) was used. The molecular matrix comprised 2985 characters and 48 taxa. The Bayesian phylogeny was used to infer phylogeographical hypotheses and the evolution of breeding systems.

Key Results

Parsimony and Bayesian trees produced similar results. The Dombeyoideae from the Mascarenes are polyphyletic and distributed among four clades. Species of Dombeya, Trochetia and Ruizia are nested in the same clade, which implies the paraphyly of Dombeya. Additionally, it is shown that each of the four clades has an independent Malagasy origin. Two adaptive radiation events have occurred within two endemic lineages of the Mascarenes. The polyphyly of the Mascarene Dombeyoideae suggests at least three independent acquisitions of dioecy.

Conclusions

This molecular phylogeny highlights the taxonomic issues within the Dombeyoideae. Indeed, the limits and distinctions of the genera Dombeya, Trochetia and Ruizia should be reconsidered. The close phylogeographic relationships between the flora of the Mascarenes and Madagascar are confirmed. Despite their independent origins and a distinct evolutionary history, each endemic clade has developed a different breeding systems (dioecy) compared with the Malagasy Dombeyoideae. Sex separation appears as an evolutionary convergence and may be the consequence of selective pressures particular to insular environments.  相似文献   

15.

Background and Aims

Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene.

Methods

Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time.

Key Results

A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world.

Conclusions

Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.  相似文献   

16.

Background and Aims

At least seven species of Agave, including A. parryi, were cultivated prehistorically in Arizona, serving as important sources of food and fibre. Many relict populations from ancient cultivation remain in the modern landscape, offering a unique opportunity to study pre-Columbian plant manipulation practices. This study examined genetic and morphological variation in six A. p. var. huachucensis populations of unknown origin to compare them with previous work on A. parryi populations of known origin, to infer their cultivation history and to determine whether artificial selection is evident in populations potentially managed by early agriculturalists.

Methods

Six A. p. var. huachucensis and 17 A. parryi populations were sampled, and morphometric, allozyme and microsatellite data were used to compare morphology and genetic structure in purportedly anthropogenic and wild populations, as well as in the two taxa. Analysis of molecular variance and Bayesian clustering were performed to partition variation associated with taxonomic identity and hypothesized evolutionary history, to highlight patterns of similarity among populations and to identify potential wild sources for the planting stock.

Key Results A

p. var. huachucensis and A. parryi populations differed significantly both morphologically and genetically. Like A. parryi, wild A. p. var. huachucensis populations were more genetically diverse than the inferred anthropogenic populations, with greater expected heterozygosity, percentage of polymorphic loci and number of alleles. Inferred anthropogenic populations exhibited many traits indicative of past active cultivation: greater morphological uniformity, fixed heterozygosity for several loci (non-existent in wild populations), fewer multilocus genotypes and strong differentiation among populations.

Conclusions

Where archaeological information is lacking, the genetic signature of many Agave populations in Arizona can be used to infer their evolutionary history and to identify potentially fruitful sites for archaeological investigation of ancient settlements and cultivation practices. The same approach can clearly be adopted for other species in similar situations.  相似文献   

17.

Background and Aims

Landscape genetics combines approaches from population genetics and landscape ecology, increasing the scope for conceptual advances in biology. Banksia hookeriana comprises clusters of individuals located on dune crests (geographical populations) physically separated by uninhabitable swales, with local extinctions common through frequent fire and/or severe drought.

Methods

A landscape genetics approach was used to explore landscape-scale genetic connectivity and structure among geographical populations of B. hookeriana on 18 physically separated dunes located within a heterogeneous landscape of 3 × 5 km. These geographical populations were separated by approx. 0·1 to >1 km of unsuitable intervening swale habitat. Using 11 highly variable microsatellite loci, we utilized a Bayesian approach to identify genetic discontinuities within and between these geographical populations. Population allocation tests were then used to detect inter-dune seed dispersal inferred from assignment of individuals to a source population other than that from which they were collected.

Key Results

For the modal number of genetically distinct clusters (n = 17 genetic populations), two coincided with the geographical (dune) populations, eight spanned two to four geographical populations, and the remaining seven were spread among various parts of the sampled dunes, so that most geographical populations were spatially defined mosaics of individuals (subpopulations) belonging to two or more genetic populations. We inferred 25 inter-dune immigrants among the 582 individuals assessed, with an average distance between sink and source dunes of 1·1 km, and a maximum of 3·3 km.

Conclusions

The results show that genetic structure in an apparently strongly spatially structured landscape is not solely dependent on landscape structure, and that many physically defined geographical populations were genetic mosaics. More strikingly, there were physically separated individuals and groups of individuals that were part of the same genetically defined populations. We attribute this mismatch between spatially and genetically defined population structure to the varying closeness of the dunes and the ability of seeds to disperse long distances.  相似文献   

18.

Background and Aims

Investigating intraspecific karyotypic and genetic variations jointly can provide unique insights into how historical, ecological and cytogenetic factors influence microevolution. A coastal herb, Lysimachia mauritiana, exhibits extensive karyotypic polymorphism and displays a complex cytogeographic pattern across the Ryukyus. To explore whether a similar degree of chromosomal variation exists south of the Ryukyus, and in an attempt to ascertain the mechanisms that may have generated the patterns, comprehensive sampling was conducted in Taiwan.

Methods

Karyotypes were analysed at mitotic metaphase for 550 individuals from 42 populations throughout Taiwan Proper and its adjacent islands. In addition, genetic variation was estimated using 12 allozymes (21 loci) of 314 individuals sampled from 12 localities.

Key Results

Four chromosome numbers and eight cytotypes, including four endemic cytotypes, were detected. Cytotype distributions were highly structured geographically, with single cytotypes present in most populations and four major cytotypes dominating the north, east and south of Taiwan and the Penghu Archipelago. Allozyme variation was very low and F-statistics indicated an extremely high level of population differentiation, implying limited gene flow among populations. Cluster analysis of allozyme variation uncovered four geographic groups, each corresponding perfectly to the four dominant cytotypes. The geographic structure of cytotype distribution and allozyme variation probably resulted from severe genetic drift triggered by genetic bottlenecks, suggesting that Taiwanese populations were likely to be derived from four independent founder events. In the few localities with multiple cytotypes, cytogeographic patterns and inferences of chromosomal evolution revealed a trend of northward dispersal, consistent with the course of the Kuroshio Current that has been influential in shaping the coastal biota of the region.

Conclusions

The data elucidate the patterns of colonization and the effects of the Kuroshio Current on the distribution of L. mauritiana in Taiwan. These inferences are highly relevant to other coastal plant species in the region and will stimulate further studies.  相似文献   

19.

Background and Aims

The Hawaiian silversword alliance (Asteraceae) is one the best examples of a plant adaptive radiation, exhibiting extensive morphological and ecological diversity. No research within this group has addressed the role of geographical isolation, independent of ecological adaptation, in contributing to taxonomic diversity. The aims of this study were to examine genetic differentiation among subspecies of Dubautia laxa (Asteraceae) to determine if allopatric or sympatric populations and subspecies form distinct genetic clusters to understand better the role of geography in diversification within the alliance.

Methods

Dubautia laxa is a widespread member of the Hawaiian silversword alliance, occurring on four of the five major islands of the Hawaiian archipelago, with four subspecies recognized on the basis of morphological, ecological and geographical variation. Nuclear microsatellites and plastid DNA sequence data were examined. Data were analysed using maximum-likelihood and Bayesian phylogenetic methodologies to identify unique evolutionary lineages.

Key Results

Plastid DNA sequence data resolved two highly divergent lineages, recognized as the Laxa and Hirsuta groups, that are more similar to other members of the Hawaiian silversword alliance than they are to each other. The Laxa group is basal to the young island species of Dubautia, whereas the Hirsuta group forms a clade with the old island lineages of Dubautia and with Argyroxiphium. The divergence between the plastid groups is supported by Bayesian microsatellite clustering analyses, but the degree of nuclear differentiation is not as great. Clear genetic differentiation is only observed between allopatric populations, both within and among islands.

Conclusions

These results indicate that geographical separation has aided diversification in D. laxa, whereas ecologically associated morphological differences are not associated with neutral genetic differentiation. This suggests that, despite the stunning ecological adaptation observed, geography has also played an important role in the Hawaiian silversword alliance plant adaptive radiation.  相似文献   

20.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号