首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Until the recent discovery of pRF in Rickettsia felis, the obligate intracellular bacteria of the genus Rickettsia (Rickettsiales: Rickettsiaceae) were thought not to possess plasmids. We describe pRM, a plasmid from Rickettsia monacensis, which was detected by pulsed-field gel electrophoresis and Southern blot analyses of DNA from two independent R. monacensis populations transformed by transposon-mediated insertion of coupled green fluorescent protein and chloramphenicol acetyltransferase marker genes into pRM. Two-dimensional electrophoresis showed that pRM was present in rickettsial cells as circular and linear isomers. The 23,486-nucleotide (31.8% G/C) pRM plasmid was cloned from the transformant populations by chloramphenicol marker rescue of restriction enzyme-digested transformant DNA fragments and PCR using primers derived from sequences of overlapping restriction fragments. The plasmid was sequenced. Based on BLAST searches of the GenBank database, pRM contained 23 predicted genes or pseudogenes and was remarkably similar to the larger pRF plasmid. Two of the 23 genes were unique to pRM and pRF among sequenced rickettsial genomes, and 4 of the genes shared by pRM and pRF were otherwise found only on chromosomes of R. felis or the ancestral group rickettsiae R. bellii and R. canadensis. We obtained pulsed-field gel electrophoresis and Southern blot evidence for a plasmid in R. amblyommii isolate WB-8-2 that contained genes conserved between pRM and pRF. The pRM plasmid may provide a basis for the development of a rickettsial transformation vector.  相似文献   

2.
Until the recent discovery of pRF in Rickettsia felis, the obligate intracellular bacteria of the genus Rickettsia (Rickettsiales: Rickettsiaceae) were thought not to possess plasmids. We describe pRM, a plasmid from Rickettsia monacensis, which was detected by pulsed-field gel electrophoresis and Southern blot analyses of DNA from two independent R. monacensis populations transformed by transposon-mediated insertion of coupled green fluorescent protein and chloramphenicol acetyltransferase marker genes into pRM. Two-dimensional electrophoresis showed that pRM was present in rickettsial cells as circular and linear isomers. The 23,486-nucleotide (31.8% G/C) pRM plasmid was cloned from the transformant populations by chloramphenicol marker rescue of restriction enzyme-digested transformant DNA fragments and PCR using primers derived from sequences of overlapping restriction fragments. The plasmid was sequenced. Based on BLAST searches of the GenBank database, pRM contained 23 predicted genes or pseudogenes and was remarkably similar to the larger pRF plasmid. Two of the 23 genes were unique to pRM and pRF among sequenced rickettsial genomes, and 4 of the genes shared by pRM and pRF were otherwise found only on chromosomes of R. felis or the ancestral group rickettsiae R. bellii and R. canadensis. We obtained pulsed-field gel electrophoresis and Southern blot evidence for a plasmid in R. amblyommii isolate WB-8-2 that contained genes conserved between pRM and pRF. The pRM plasmid may provide a basis for the development of a rickettsial transformation vector.  相似文献   

3.
Many plasmids are mobile genetic elements (MGEs) and, as other members of that group of DNA entities, their genomes display a mosaic and combinatorial structure, making their classification extremely difficult. As other MGEs, plasmids play a major role in horizontal transfer of genetic materials and genome reorganization. Yet, the full impact of such phenomenon on major properties of the host cell, such as pathogenicity, the ability to use new carbon sources or resistance to antibiotics, remains to be fully assessed. More and more complete plasmid genome sequences are available. However, in the absence of standards for storing plasmid sequence data and annotating genes and gene products on sequenced plasmid genomes, the resulting information remains rather limited. Using 503 sequenced plasmids organized in the ACLAME database, we discuss how, by structuring information on the genomes, their host and the proteins they code for, one can gain access to either global or more detailed analysis of the plasmid sequence information, as illustrated by a network representation of the relationships between plasmids.  相似文献   

4.
Rickettsia typhi and Rickettsia felis (Rickettsiales: Rickettsiaceae) are two rickettsiae principally transmitted by fleas, but the detection of either pathogen has rarely been attempted in Taiwan. Of 2048 small mammals trapped in eastern Taiwan, Apodemus agrarius Pallas (24.5%) and Mus caroli Bonhote (24.4%) (both: Rodentia: Muridae) were the most abundant, and M. caroli hosted the highest proportion of fleas (63.9% of 330 fleas). Two flea species were identified: Stivalius aporus Jordan and Rothschild (Siphonaptera: Stivaliidae), and Acropsylla episema Rothschild (Siphonaptera: Leptopsyllidae). Nested polymerase chain reaction targeting parts of the ompB and gltA genes showed six fleas to be positive for Rickettsia spp. (3.8% of 160 samples), which showed the greatest similarity to R. felis, Rickettsia japonica, Rickettsia conorii or Rickettsia sp. TwKM01. Rickettsia typhi was not detected in the fleas and Rickettsia co-infection did not occur. Both flea species were more abundant during months with lower temperatures and less rainfall, and flea abundance on M. caroli was not related to soil hardness, vegetative height, ground cover by litter or by understory layer, or the abundance of M. caroli. Our study reveals the potential circulation of R. felis and other rickettsiae in eastern Taiwan, necessitating further surveillance of rickettsial diseases in this region. This is especially important because many novel rickettsioses are emerging worldwide.  相似文献   

5.
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, “Candidatus Rickettsia amblyommii,” R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two “Ca. Rickettsia amblyommii” isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of “Ca. Rickettsia amblyommii,” R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.The alphaproteobacteria of the genus Rickettsia (Rickettsiales; Rickettsiaceae) have undergone the reductive genome evolution typical of obligate intracellular bacteria, resulting in A/T-rich genomes (1.1 × 106 to 1.5 × 106 bp) with a high content of pseudogenes undergoing elimination (3, 10, 20, 26). Initial sequencing of rickettsial genomes focused on the important arthropod-borne pathogens Rickettsia prowazekii, Rickettsia conorii, and Rickettsia typhi and appeared to confirm the prevailing belief that plasmids were absent and transposons were rare among Rickettsia spp. (2, 28, 39, 44). As mobile genetic elements in bacteria, plasmids and transposons drive horizontal gene transfer (HGT) and the acquisition of virulence determinants and environmental adaptive traits (30, 43, 60, 70). Subsequent sequencing of the Rickettsia felis genome revealed the surprising presence of abundant transposase paralogs and the 63-kbp pRF plasmid, with 68 open reading frames (ORFs) encoding predicted proteins, as well as a 39-kbp deletion form, pRFδ (45). Although pRF was suggested to be conjugative, it was initially thought to be unique among the rickettsiae, a reasonable inference given that plasmids are uncommon among the reduced genomes of obligate intracellular bacteria and were previously unknown in the Rickettsiales (3, 4, 13). However, a phylogenetic analysis implied an origin for pRF in ancestral rickettsiae and the possible existence of other rickettsial plasmids (28), which was soon confirmed by the cloning of the 23.5-kbp pRM plasmid from Rickettsia monacensis (6). Some of the 23 ORFs on pRM had close pRF homologs, and both plasmids carried transposon genes and the molecular footprints of transposition events associated with HGT from other bacterial taxa.The discoveries of pRF and pRM made obsolete the long-held dogma that plasmids were not present in members of the genus Rickettsia and implied a source of unexpected genetic diversity in the reduced rickettsial genomes, particularly if potentially conjugative plasmids carrying transposon genes proved to be common among members of the genus. That hypothesis gained credence when pulsed-field gel electrophoresis (PFGE) and Southern blot surveys (7) using plasmid gene-specific probes demonstrated plasmids in Rickettsia helvetica, “Candidatus Rickettsia hoogstraalii” (38), and Rickettsia massiliae and possible multiple plasmids in “Candidatus Rickettsia amblyommii” (71) isolates. The same study demonstrated the loss of a plasmid in the nonpathogenic species Rickettsia peacockii during long-term serial passage in cultured cells and the absence of a plasmid in Rickettsia montanensis M5/6, an isolate with a long laboratory passage history. Genome sequencing of R. massiliae and Rickettsia africae revealed the 15.3-kbp pRMA and 12.4-kbp pRAF sequences, with 12 and 11 ORFs, respectively, that were more similar to those of pRF than to those of pRM (11, 24).The absence of plasmids in R. montanensis and important Rickettsia pathogens maintained as laboratory isolates has left unresolved the question of the true extent of plasmid distribution among Rickettsia spp. Until recently, the genus was thought to consist of closely related species, known chiefly as typhus and spotted fever pathogens transmitted by lice, fleas, mites, and ticks (31). It is now apparent that many, and possibly most, Rickettsia spp. inhabit a diverse range of arthropods that do not feed on blood, as well as leeches, helminths, crustaceans, and protozoans, suggesting an ancient and complex evolutionary history (54). A multigene phylogenetic analysis of the Rickettsiales resulted in a “molecular clock” which indicated that the order arose from a presumably free-living ancestor and then adapted to intracellular growth during the appearance of metazoan phyla in the Cambrian explosion (76). A transition to a primary association with arthropods followed during the Ordovician and Silurian periods. The genus Rickettsia arose approximately 150 million years ago and evolved into several clades, including the early-diverging hydra and torix lineages associated with leeches and protozoans. A rapid radiation occurred about 50 million years ago in the arthropod-associated lineages (76).Whole-genome sequencing has led to a revision of phylogenetic relationships among Rickettsia spp. associated with blood-feeding arthropods (10, 26, 28). A newly defined ancestral group (AG) contains the earliest-diverging species, Rickettsia bellii and Rickettsia canadensis, while R. prowazekii and R. typhi, transmitted by lice and fleas, respectively, constitute the typhus group (TG). A proposed transitional group (TRG), consisting of the mite-borne Rickettsia akari, the flea-borne R. felis, and the tick-borne Rickettsia australis, bridges the genotypic and phenotypic differences between the TG and the much larger spotted fever group (SFG), consisting of tick-borne rickettsiae (28). However, some presumptive SFG rickettsiae remain poorly characterized and are of uncertain phylogenetic status, while the accumulation of genomic data from rickettsiae found in a diverse range of invertebrate hosts may have profound impacts on the currently understood phylogeny of rickettsiae associated with blood-feeding arthropods. For example, it appears that the above AG and TRG species have many close relatives in insects (76). Despite the recent phylogenomic advances, the genetic and host-adaptive mechanisms underlying the evolution of arthropod-transmitted pathogens of vertebrates from ancestral Rickettsia spp., including any possible role of plasmids, remain poorly understood.In this report, we have taken advantage of recent isolations of rickettsiae from North and South America to conclusively demonstrate that low-copy-number plasmids are indeed common in low-passage isolates of AG, TRG, and SFG rickettsiae. The only exceptions were multiple isolates of R. parkeri, obtained from ticks and human eschar biopsy specimens and newly recognized as a mildly pathogenic SFG rickettsia (49, 50, 52, 79), and the previously characterized species R. montanensis (7). We confirmed that some Rickettsia isolates harbor more than one plasmid by cloning and sequencing multiple plasmids from “Ca. Rickettsia amblyommii” isolates AaR/SC and Ac/Pa, and we obtained PCR- and gel-based evidence that supported genome sequence evidence for the existence of multiple plasmids in REIS, the rickettsial endosymbiont of Ixodes scapularis. Phylogenetic analysis provided strong evidence for multiple plasmid incompatibility groups and possible multiple origins of plasmid-carried parA genes in the genus Rickettsia. Other than genes encoding plasmid replication initiation and partitioning proteins, the newly sequenced “Ca. Rickettsia amblyommii” plasmids resembled the previously sequenced rickettsial plasmids in sharing limited similarities in coding capacity (6, 7, 22). However, we have previously drawn attention to the presence of hsp genes, encoding α-crystalline small heat shock proteins, as a conserved feature of most rickettsial plasmids that may play a role in host adaptation (7). Phylogenetic analysis indicated that the hsp2 genes were plasmid specific, while the hsp1 genes found on four rickettsial plasmids may have been acquired by a chromosome-to-plasmid transfer event in a TRG-like species.  相似文献   

6.
The male-killing ladybird beetle (LB) bacterium (AB bacterium) was analyzed with specific rickettsial molecular biology tools in the LB Adalia bipunctata strains. Eight phenotype-positive LB strains showing mortality of male embryos were amplified with rickettsial genus-specific primers from the gene for citrate synthase (CS) and the gene for a 17-kDa protein and spotted fever group-specific primers from the gene for the 120-kDa outer membrane protein (ompB). The specificity of amplification was confirmed by Southern hybridization and the absence of the above-listed gene products in three phenotype-negative LB strains. Restriction polymorphism patterns of three examined amplicons from the CS gene, 17-kDa-protein gene, and ompB gene were identical among the eight phenotype-positive LB strains and were unique among all known rickettsiae of the spotted fever and typhus groups. Amplified fragments of the CS genes of the AB bacterium, Rickettsia prowazekii Breinl, Rickettsia typhi Wilmington, Rickettsia canada 2678, and Rickettsia conorii 7 (Malish) were sequenced. The greatest differences among the above-listed rickettsial and AB bacterium CS gene sequences were between bp 1078 and 1110. Numerical analysis based on CS gene fragment sequences shows the close relationships of the AB bacterium to the genus Rickettsia. Expanding of knowledge about rickettsial arthropod vectors and participation of rickettsiae in the cytoplasmic maternal inheritance of arthropods is discussed.  相似文献   

7.
Mitochondrial porin was identified in Rickettsia prowazekii by Western blot analysis of whole cells and membrane fractions with monoclonal antibody against porin VDAC 1 of animal mitochondria. Using the BLAST server, no protein sequences homologous to mitochondrial porin were found among the rickettsial genomes. Rickettsiae also do not contain their own porin. The protein imported by rickettsiae is weakly extracted by nonionic detergents and, like porin in mitochondria, is insensitive to proteinase K in whole cells. Immunocytochemical analysis showed that it localizes to the outer membrane of the bacterial cells. These data support an earlier suggestion about import by rickettsiae of indispensable proteins from cytoplasm of the host cell as a molecular basis of obligate intracellular parasitism. They are also consistent with the hypothesis invoking a transfer of genes specifying surface proteins from the last common ancestor of rickettsiae and mitochondria to the host genome, and preservation by rickettsiae of the primitive ability to import these proteins.  相似文献   

8.
The SAR11 clade, here represented by Candidatus Pelagibacter ubique, is the most successful group of bacteria in the upper surface waters of the oceans. In contrast to previous studies that have associated the 1.3 Mb genome of Ca. Pelagibacter ubique with the less than 1.5 Mb genomes of the Rickettsiales, our phylogenetic analysis suggests that Ca. Pelagibacter ubique is most closely related to soil and aquatic Alphaproteobacteria with large genomes. This implies that the SAR11 clade and the Rickettsiales have undergone genome reduction independently. A gene flux analysis of 46 representative alphaproteobacterial genomes indicates the loss of more than 800 genes in each of Ca. Pelagibacter ubique and the Rickettsiales. Consistent with their different phylogenetic affiliations, the pattern of gene loss differs with a higher loss of genes for repair and recombination processes in Ca. Pelagibacter ubique as compared with a more extensive loss of genes for biosynthetic functions in the Rickettsiales. Some of the lost genes in Ca. Pelagibacter ubique, such as mutLS, recFN, and ruvABC, are conserved in all other alphaproteobacterial genomes including the small genomes of the Rickettsiales. The mismatch repair genes mutLS are absent from all currently sequenced SAR11 genomes and also underrepresented in the global ocean metagenome data set. We hypothesize that the unique loss of genes involved in repair and recombination processes in Ca. Pelagibacter ubique has been driven by selection and that this helps explain many of the characteristics of the SAR11 population, such as the streamlined genomes, the long branch lengths, the high recombination frequencies, and the extensive sequence divergence within the population.  相似文献   

9.
Growth pattern of Rickettsia tsutsugamushi in irradiated L cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
Irradiated L cells infected with Rickettsia tsutsugamushi were studied under the electron microscope to define the morphological growth pattern of the organism. For 2 days after inoculation, no rickettsiae were found either extra- or intracellularly; after 2 days multiple rickettsiae appeared within the host cells without morphological evidence of their entry. These observations showed that the rickettsiae within the cell were assembled in situ by segregation of portions of the granular cytoplasm and subsequent internal differentiation and surface membrane assembly of the segregated bodies. The protoplasmic (P) bodies, which seemed to be formed by shedding infected-cell granular cytoplasm, consistently appeared on the surface and within the phagosomes of the host cells. Rickettsiae were occasionally seen entering host cells in the later phase of infection; these were apparently the ones assembled within the P bodies. This suggested that the P bodies, and not the rickettsiae, were the major infectious particles that transmitted the rickettsial genetic substance among the host cells. On the basis of the present morphological observations, viral-type multiplication for R. tsutsugamushi is proposed.  相似文献   

10.
We developed a nested polymerase chain reaction (PCR) method to detect Rickettsia tsutsugamushi (R. tsutsugamushi) DNA and determined its sensitivity. Primers were selected from the DNA sequence of the 58-kDa group-specific antigen gene of the Karp strain. The target sequence of rickettsial DNA was detectable as the band corresponding to 88 bp in 1.0 microgram of the DNA extracted from BS-C-1 cells infected with R. tsutsugamushi. Rickettsia-specific bands were observed not only for the homologous Karp strain, but also for four heterologous strains: two other reference strains (Gilliam and Kato) and two prototype strains prevalent in Miyazaki district (Irie and Hirano). The minimum copy number detectable by this method was estimated to be five rickettsiae. All of nine peripheral blood mononuclear cell samples from patients with tsutsugamushi disease who were seen 2-11 days after disease onset tested positive for rickettsial DNA. The PCR assay method presented here could be a specific diagnostic tool for tsutsugamushi disease, especially in its early acute stage.  相似文献   

11.
12.
Cytolytic human T cell clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.  相似文献   

13.
The recently sequenced Rickettsia felis genome revealed an unexpected plasmid carrying several genes usually associated with DNA transfer, suggesting that ancestral rickettsiae might have been endowed with a conjugation apparatus. Here we present the genome sequence of Rickettsia bellii, the earliest diverging species of known rickettsiae. The 1,552,076 base pair–long chromosome does not exhibit the colinearity observed between other rickettsia genomes, and encodes a complete set of putative conjugal DNA transfer genes most similar to homologues found in Protochlamydia amoebophila UWE25, an obligate symbiont of amoebae. The genome exhibits many other genes highly similar to homologues in intracellular bacteria of amoebae. We sought and observed sex pili-like cell surface appendages for R. bellii. We also found that R. bellii very efficiently multiplies in the nucleus of eukaryotic cells and survives in the phagocytic amoeba, Acanthamoeba polyphaga. These results suggest that amoeba-like ancestral protozoa could have served as a genetic “melting pot” where the ancestors of rickettsiae and other bacteria promiscuously exchanged genes, eventually leading to their adaptation to the intracellular lifestyle within eukaryotic cells.  相似文献   

14.
The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of ‘Candidatus Arcanobacter lacustris'', a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae. Intriguingly, phylogenomic and comparative analysis of the partial ‘Candidatus Arcanobacter lacustris'' genome revealed the presence chemotaxis genes and vertically inherited flagellar genes, a novelty in sequenced Rickettsiaceae, as well as several host-associated features. This finding suggests that the ancestor of the Rickettsiaceae might have had a facultative intracellular lifestyle. Our study underlines the efficacy of single-cell genomics for studying microbial diversity and evolution in general, and for rare microbial cells in particular.  相似文献   

15.
To study reductive evolutionary processes in bacterial genomes, we examine sequences in the Rickettsia genomes which are unconstrained by selection and evolve as pseudogenes, one of which is the metK gene, which codes for AdoMet synthetase. Here, we sequenced the metK gene and three surrounding genes in eight different species of the genus Rickettsia. The metK gene was found to contain a high incidence of deletions in six lineages, while the three genes in its surroundings were functionally conserved in all eight lineages. A more drastic example of gene degradation was identified in the metK downstream region, which contained an open reading frame in Rickettsia felis. Remnants of this open reading frame could be reconstructed in five additional species by eliminating sites of frameshift mutations and termination codons. A detailed examination of the two reconstructed genes revealed that deletions strongly predominate over insertions and that there is a strong transition bias for point mutations which is coupled to an excess of GC-to-AT substitutions. Since the molecular evolution of these inactive genes should reflect the rates and patterns of neutral mutations, our results strongly suggest that there is a high spontaneous rate of deletions as well as a strong mutation bias toward AT pairs in the Rickettsia genomes. This may explain the low genomic G + C content (29%), the small genome size (1.1 Mb), and the high noncoding content (24%), as well as the presence of several pseudogenes in the Rickettsia prowazekii genome.  相似文献   

16.
Sequencing of the Rickettsia conorii genome and its comparison with its closest sequenced pathogenic relative, i.e., Rickettsia prowazekii, provided powerful insights into the evolution of these microbial pathogens. However, advances in our knowledge of rickettsial diseases are still hindered by the difficulty of working with strict intracellular bacteria and their hosts. Information gained from comparing the genomes of closely related organisms will shed new light on proteins susceptible to be targeted in specific diagnostic assays, by new antimicrobial drugs, and that could be employed in the generation of future rickettsial vaccines. In this review we present a detailed comparison of the metabolic pathways of these bacteria as well as the polymorphisms of their membrane proteins, transporters and putative virulence factors. Environmental adaptation of Rickettsia is also discussed.  相似文献   

17.
Ticks (Acari: Ixodidae) are ubiquitous hosts of rickettsiae (Rickettsiaceae: Rickettsia), obligate intracellular bacteria that occur as a continuum from nonpathogenic arthropod endosymbionts to virulent pathogens of both arthropod vectors and vertebrates. Visualization of rickettsiae in hosts has traditionally been limited to techniques utilizing fixed tissues. We report epifluorescence microscopy observations of unfixed tick tissues infected with a spotted fever group endosymbiont, Rickettsia monacensis, transformed to express green fluorescent protein (GFP). Fluorescent rickettsiae were readily visualized in tick tissues. In adult female, but not male, Ixodes scapularis infected by capillary feeding, R. monacensis disseminated from the gut and infected the salivary glands that are crucial to the role of ticks as vectors. The rickettsiae infected the respiratory tracheal system, a potential dissemination pathway and possible infection reservoir during tick molting. R. monacensis disseminated from the gut of capillary fed I. scapularis nymphs and was transstadially transmitted to adults. Larvae, infected by immersion, transstadially transmitted the rickettsiae to nymphs. Infected female I. scapularis did not transovarially transmit R. monacensis to progeny and the rickettsiae were not horizontally transmitted to a rabbit or hamsters. Survival of infected nymphal and adult I. scapularis did not differ from that of uninfected control ticks. R. monacensis did not disseminate from the gut of capillary fed adult female Amblyomma americanum (L.), or adult Dermacentor variabilis (Say) ticks of either sex. Infection of I. scapularis with R. monacensis expressing GFP provides a model system allowing visualization and study of live rickettsiae in unfixed tissues of an arthropod host.  相似文献   

18.
Genetic analysis of Rickettsia prowazekii has been hindered by the lack of selectable markers and efficient mechanisms for generating rickettsial gene knockouts. We have addressed these problems by adapting a gene that codes for rifampin resistance for expression in R. prowazekii and by incorporating this selection into a transposon mutagenesis system suitable for generating rickettsial gene knockouts. The arr-2 gene codes for an enzyme that ADP-ribosylates rifampin, thereby destroying its antibacterial activity. Based on the published sequence, this gene was synthesized by PCR with overlapping primers that contained rickettsial codon usage base changes. This R. prowazekii-adapted arr-2 gene (Rparr-2) was placed downstream of the strong rickettsial rpsL promoter (rpsL(P)), and the entire construct was inserted into the Epicentre EZ::TN transposome system. A purified transposon containing rpsL(P)-Rparr-2 was combined with transposase, and the resulting DNA-protein complex (transposome) was electroporated into competent rickettsiae. Following selection with rifampin, rickettsiae with transposon insertions in the genome were identified by PCR and Southern blotting and the insertion sites were determined by rescue cloning and inverse PCR. Multiple insertions into widely spaced areas of the R. prowazekii genome were identified. Three insertions were identified within gene coding sequences. Transposomes provide a mechanism for generating random insertional mutations in R. prowazekii, thereby identifying nonessential rickettsial genes.  相似文献   

19.
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.  相似文献   

20.
Rickettsia are obligate intracellular pathogens transmitted by arthropod vectors. The re-emergence of several rickettsioses imposes severe global health burden. In addition to the well-established rickettsial pathogens, newer rickettsial species and their pathogenic potentials are being uncovered. There are many reports of spotted and typhus fever caused by rickettsiae in India. Hence, in this study we screened the ectoparasites of pet and domestic animals for the presence of rickettsia using polymerase chain reaction. Nine cat flea samples (Ctenocephalides felis felis), that tested positive for the presence of rickettsia were subjected to Multi Locus Sequence Typing. Nucleotide sequencing and Phylogenetic analysis of gltA, ompB and 16rrs genes revealed that the rickettsiae detected in cat fleas was Rickettsia asembonensis. Further studies are required to assess Rickettsia asembonensis pathogenic potential to human and its enzootic maintenance of in various hosts and vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号