首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that alterations in electrical activation sequence contribute to depressed systolic function in the infarct border zone, we examined the anatomic correlation of abnormal electromechanics and infarct geometry in the canine post-myocardial infarction (MI) heart, using a high-resolution MR-based cardiac electromechanical mapping technique. Three to eight weeks after an MI was created in six dogs, a 247-electrode epicardial sock was placed over the ventricular epicardium under thoracotomy. MI location and geometry were evaluated with delayed hyperenhancement MRI. Three-dimensional systolic strains in epicardial and endocardial layers were measured in five short-axis slices with motion-tracking MRI (displacement encoding with stimulated echoes). Epicardial electrical activation was determined from sock recordings immediately before and after the MR scans. The electrodes and MR images were spatially registered to create a total of 160 nodes per heart that contained mechanical, transmural infarct extent, and electrical data. The average depth of the infarct was 55% (SD 11), and the infarct covered 28% (SD 6) of the left ventricular mass. Significantly delayed activation (>mean + 2SD) was observed within the infarct zone. The strain map showed abnormal mechanics, including abnormal stretch and loss of the transmural gradient of radial, circumferential, and longitudinal strains, in the region extending far beyond the infarct zone. We conclude that the border zone is characterized by abnormal mechanics directly coupled with normal electrical depolarization. This indicates that impaired function in the border zone is not contributed by electrical factors but results from mechanical interaction between ischemic and normal myocardium.  相似文献   

2.
The three-dimensional geometry and anisotropic properties of the heart give rise to nonhomogeneous distributions of stress, strain, electrical activation and repolarization. In this article we review the ventricular geometry and myofiber architecture of the heart, and the experimental and modeling studies of three-dimensional cardiac mechanics and electrophysiology. The development of a three-dimensional finite element model of the rabbit ventricular geometry and fiber architecture is described in detail. Finally, we review the experimental results, from the level of the cell to the intact organ, which motivate the development of coupled three-dimensional models of cardiac electromechanics and mechanoelectric feedback.  相似文献   

3.
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.  相似文献   

4.
5.
Early relaxation in the cardiac cycle is characterized by rapid torsional recoil of the left ventricular (LV) wall. To elucidate the contribution of the transmural arrangement of the myofiber to relaxation, we determined the time course of three-dimensional fiber-sheet strains in the anterior wall of five adult mongrel dogs in vivo during early relaxation with biplane cineangiography (125 Hz) of implanted transmural markers. Fiber-sheet strains were found from transmural fiber and sheet orientations directly measured in the heart tissue. The strain time course was determined during early relaxation in the epicardial, midwall, and endocardial layers referenced to the end-diastolic configuration. During early relaxation, significant circumferential stretch, wall thinning, and in-plane and transverse shear were observed (P < 0.05). We also observed significant stretch along myofibers in the epicardial layers and sheet shortening and shear in the endocardial layers (P < 0.01). Importantly, predominant epicardial stretch along the fiber direction and endocardial sheet shortening occurred during isovolumic relaxation (P < 0.05). We conclude that the LV mechanics during early relaxation involves substantial deformation of fiber and sheet structures with significant transmural heterogeneity. Predominant epicardial stretch along myofibers during isovolumic relaxation appears to drive global torsional recoil to aid early diastolic filling.  相似文献   

6.
A simple mathematical model capable of simulating the major biomechanical attributes of contracting cardiac muscle is presented. This model is based on the phenomenological observations on heart muscle. The form of the equation can be readily extended to describe the pressure-volume-time-velocity of the intact heart as well, thus allowing a direct bridge between the dynamics of papillary muscle and the dynamics of intact heart. Parameters that are sensitive to inotropic state of the muscle can be obtained directly from the isometric tension-time record of the muscle or the isovolumic pressure-time record of the ventricle. These parameters have the potential to serve as quantitative measures of cardiac health.  相似文献   

7.
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.  相似文献   

8.
The temporal and spatial expression of transforming growth factor (TGF)-beta(1) and connective tissue growth factor (CTGF) was assessed in the left ventricle of a myocardial infarction (MI) model of injury with and without angiotensin-converting enzyme (ACE) inhibition. Coronary artery ligated rats were killed 1, 3, 7, 28, and 180 days after MI. TGF-beta(1), CTGF, and procollagen alpha1(I) mRNA were localized by in situ hybridization, and TGF-beta(1) and CTGF protein levels by immunohistochemistry. Collagen protein was measured using picrosirius red staining. In a separate group, rats were treated for 6 months with an ACE inhibitor. There were temporal and regional differences in the expression of TGF-beta(1), CTGF, and collagen after MI. Procollagen alpha1(I) mRNA expression increased in the border zone and scar peaking 1 week after MI, whereas collagen protein increased in all areas of the heart over the 180 days. Expression of TGF-beta(1) mRNA and protein showed major increases in the border zone and scar peaking 1 week after MI. The major increases in CTGF mRNA and protein occurred in the viable myocardium at 180 days after MI. Long-term ACE inhibition reduced left ventricular mass and decreased fibrosis in the viable myocardium, but had no effect on cardiac TGF-beta(1) or CTGF. TGF-beta(1) is involved in the initial, acute phase of inflammation and repair after MI, whereas CTGF is involved in the ongoing fibrosis of the heart. The antifibrotic benefits of captopril are not mediated through a reduction in CTGF.  相似文献   

9.
A theoretical model is presented for the tubular heart of the stage-16 chick embryo (2.3 days of a 21-day incubation period). The model is a thick-walled, pseudoelastic cylindrical shell composed of three isotropic layers: the endocardium, the cardiac jelly, and the myocardium. The analysis is based on a shell theory that accounts for large deformation, material nonlinearity, residual strain, and muscle activation, with material properties inferred from available experimental data. We also measured epicardial strains from recorded motions of microspheres on the primitive right ventricles of stage-16 white Leghorn chick embryos. Relative to end diastole, peak axial and circumferential Lagrange strains occurred near end systole and had similar values. The magnitudes of these strains varied along the longitudinal axis of the heart (-0.16 +/- 0.08), being larger near the ends of the primitive right ventricle and smaller near midventricle. The in-plane shear strain was less than 0.05. Comparison of theoretical and experimental strains during the cardiac cycle shows generally good agreement. In addition, the model gives strong stress concentrations in the myocardial layer at end systole.  相似文献   

10.
The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability, and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as hyperelastic warping for the measurement of local strains in the left ventricle from clinical cine-magnetic resonance imaging (MRI) image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastolic cine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from hyperelastic warping showed good agreement with those of the forward solution (R2=0.67 stretch, R2=0.76 circumferential strain, R2=0.75 radial strain, and R2=0.70 in-plane shear). The technique had low sensitivity to changes in material parameters (deltaR2= -0.023 fiber stretch, deltaR2=-0.020 circumferential strain, deltaR2=-0.005 radial strain, and deltaR2=0.0125 shear strain with little or no change in rms error), with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to a signal-to-noise ratio (SNR) of 4.0 (deltaR2= -0.032 fiber stretch, deltaR2=-0.023 circumferential strain, deltaR2=-0.04 radial strain, and deltaAR2=0.0211 shear strain with little or no increase in rms error). This study demonstrates that warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.  相似文献   

11.
揭示发病机制是心律失常诊断、治疗、药物研发和设备设计的关键.整合当前在心脏分子生物学、生物化学、生理学及解剖学方面的最新成果,构建从离子通道、心肌细胞、心肌纤维、心肌组织、心脏器官到躯体各个层次的多尺度多模态心脏电生理模型,用于系统研究微观局部变化发生、发展、转化为宏观心律失常表现的过程,将彻底改变传统从基因突变、蛋白质表达、细胞电生理、临床表现单独研究心律失常的方式,实现微观与宏观研究的统一,使心脏电生理模型成为系统研究心律失常发病机制的有力手段.本文综述了心脏电生理模型的构建方法和研究进展,讨论了多尺度心脏电生理模型在揭示心律失常机制研究中的作用和地位,给出了基于心脏电生理模型心律失常研究的挑战和重要发展方向.  相似文献   

12.
13.
For more than a century, electrophysiologists, cardiologists and engineers have studied the electrical activity of the human heart to better understand rhythm disorders and possible treatment options. Although the depolarisation sequence of the heart is relatively well characterised, the repolarisation sequence remains a subject of great controversy. Here, we study regional and temporal variations in both depolarisation and repolarisation using a finite element approach. We discretise the governing equations in time using an unconditionally stable implicit Euler backward scheme and in space using a consistently linearised Newton–Raphson-based finite element solver. Through systematic parameter-sensitivity studies, we establish a direct relation between a normal positive T-wave and the non-uniform distribution of the controlling parameter, which we have termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using clinically measured action potential durations at different locations in the human heart. We demonstrate the potential of our model by comparing the computationally predicted and clinically measured depolarisation and repolarisation profiles across the left ventricle. The proposed framework allows us to explore how local action potential durations on the microscopic scale translate into global repolarisation sequences on the macroscopic scale. We anticipate that our calibrated human heart model can be widely used to explore cardiac excitation in health and disease. For example, our model can serve to identify optimal pacing sites in patients with heart failure and to localise optimal ablation sites in patients with cardiac fibrillation.  相似文献   

14.
Recently, cardiac telocytes were found in the myocardium. However, the functional role of cardiac telocytes and possible changes in the cardiac telocyte population during myocardial infarction in the myocardium are not known. In this study, the role of the recently identified cardiac telocytes in myocardial infarction (MI) was investigated. Cardiac telocytes were distributed longitudinally and within the cross network of the myocardium, which was impaired during MI. Cardiac telocytes in the infarction zone were undetectable from approximately 4 days to 4 weeks after an experimental coronary occlusion was used to induce MI. Although cardiac telocytes in the non‐ischaemic area of the ischaemic heart experienced cell death, the cell density increased approximately 2 weeks after experimental coronary occlusion. The cell density was then maintained at a level similar to that observed 1–4 days after left anterior descending coronary artery (LAD)‐ligation, but was still lower than normal after 2 weeks. We also found that simultaneous transplantation of cardiac telocytes in the infarcted and border zones of the heart decreased the infarction size and improved myocardial function. These data indicate that cardiac telocytes, their secreted factors and microvesicles, and the microenvironment may be structurally and functionally important for maintenance of the physiological integrity of the myocardium. Rebuilding the cardiac telocyte network in the infarcted zone following MI may be beneficial for functional regeneration of the infarcted myocardium.  相似文献   

15.
Certain vertebrates, such as freshwater turtles of the genus Chrysemys and Trachemys and crucian carp (Carassius carassius), have anoxia-tolerant hearts that continue to function throughout prolonged periods of anoxia (up to many months) due to successful balancing of cellular ATP supply and demand. In the present review, we summarize the current and limited understanding of the cellular mechanisms underlying this cardiac anoxia tolerance. What emerges is that cold temperature substantially modifies cardiac electrophysiology to precondition the heart for winter anoxia. Intrinsic heart rate is slowed and density of sarcolemmal ion currents substantially modified to alter cardiac action potential (AP) characteristics. These changes depress cardiac activity and reduce the energetic costs associated with ion pumping. In contrast, anoxia per se results in limited changes to cardiac AP shape or ion current densities in turtle and crucian carp, suggesting that anoxic modifications of cardiac electrophysiology to reduce ATP demand are not extensive. Additionally, as knowledge of cellular physiology in non-mammalian vertebrates is still in its infancy, we briefly discuss the cellular defense mechanisms towards the acidosis that accompanies anoxia as well as mammalian cardiac models of hypoxia/ischemia tolerance. By examining if fundamental cellular mechanisms have been conserved during the evolution of anoxia tolerance we hope to have provided a framework for the design of future experiments investigating cardiac cellular mechanisms of anoxia survival.  相似文献   

16.
This study evaluated the effects of angiotensin-converting enzyme (ACE) inhibition after myocardial infarction (MI) on cardiac remodeling and gene expression and localization of components (ligands, receptors, and binding proteins) of the cardiac insulin-like growth factor (IGF) system. After ligation of the coronary artery, rats were randomized to vehicle or ACE inhibitor (Captopril, 50 mg/kg/day) for 4 weeks. Blood pressure, cardiac remodeling, and components of the IGF system were localized in the heart using in situ hybridization (ISH) and immunohistochemistry (IHC). The average infarct size was 42%. There were regional differences in the expression of the IGF system after MI, with increased IGF-I mRNA abundance in the border (24-fold) and infarct (12-fold) and increased IGF-binding protein (IGFBP)-3 mRNA in all areas of the failing left ventricle (threefold). Captopril reduced blood pressure, attenuated cardiac remodeling, and caused a threefold increase in IGF-I receptor mRNA and protein in infarct, border zone, and viable myocardium (p<0.01). Captopril had no effect on IGF-I mRNA but further increased IGFBP-3 mRNA and protein in the border zone, (p<0.05). The changes in the cardiac IGF system following MI are highly localized, persist for at least 4 weeks, and can be modulated by ACE inhibition. These data suggest that the benefits of ACE inhibitors in attenuation of cardiac remodeling may be mediated in part through increased expression of the IGF-I receptor sensitizing the myocardium to the positive effects of endogenous IGF-I.  相似文献   

17.
Late myocardial infarction (MI) is associated with ventricular arrhythmias and sudden cardiac death. The exact mechanistic relationship between abnormal cellular electrophysiology, conduction abnormalities, and arrhythmogenesis associated with late MI is not completely understood. We report a novel, rapid dye superfusion technique to enable whole heart, high-resolution optical mapping of late MI. Optical mapping of action potentials was performed in normal rats and rats with anterior MI 7 days after left anterior descending artery ligation. Hearts from normal rats exhibited normal action potentials and impulse conduction. With the use of programmed stimulation to assess arrhythmia inducibility, 29% of hearts with late MI had inducible sustained ventricular tachycardia, compared with 0% in normal rats. A causal relationship between the site of infarction, abnormal action potential conduction (i.e., block and slow conduction), and arrhythmogenesis was observed. Optical mapping techniques can be used to measure high-resolution action potentials in a whole heart model of late MI. This experimental model reproduces many of the electrophysiological characteristics (i.e., conduction slowing, block, and ventricular tachycardia) associated with MI in patients. Importantly, the results of this study can enhance our ability to understand the interplay between cellular heterogeneity, conduction abnormalities, and arrhythmogenesis associated with MI.  相似文献   

18.
An emerging therapy to limit adverse heart remodelling following myocardial infarction (MI) is the injection of polymers into the infarcted left ventricle (LV). In the few numerical studies carried out in this field, the definition and distribution of the hydrogel in the infarcted myocardium were simplified. In this computational study, a more realistic biomaterial distribution was simulated after which the effect on cardiac function and mechanics was studied. A validated finite element heart model was used in which an antero-apical infarct was defined. Four infarct models were created representing different temporal phases in the progression of a MI. Hydrogel layers were simulated in the infarcted myocardium in each model. Biomechanical and functional improvement of the LV was found after hydrogel inclusion in the ischaemic models representing the early phases of MI. In contrast, only functional but no mechanical restitution was shown in the scar model due to hydrogel presence.  相似文献   

19.
We previously demonstrated that injection of IL-2-activated natural killer (NK) cells contribute to vascular remodeling via a4b7 integrin and killer cell lectin-like receptor (KLRG) 1 and promote cardiac repair following myocardial infarction (MI). The aim of the present study is to test the hypothesis that injection of recombinant human interleukin (rhIL)-2 improves angiogenesis and preserves heart function after MI. A single IV injection of rhIL-2 two days following MI improved by 27.7% the left ventricular (LV) fractional shortening of immune competent (C57Bl6) mice, but had no effect on cardiac function of immune-deficient (NOD-SCID IL2Rγnull) mice. Immunohistochemical analysis of C57Bl6 cross sections of heart revealed that collagen deposition was reduced by 23.1% and that capillary density was enhanced in the scar area and the border zone of the infarct respectively by 22.4% and 33.6% following rhIL-2 injection. In addition, rhIL-2 enhanced 1.6-fold the in vivo endothelial cell proliferation index and 1.8-fold the number of NK cell infiltrating the infarcted heart, but had no effect on the number of cardiac CD4 and CD8 cells. In vitro, rhIL-2 activated NK cells enhanced cardiac endothelial cell proliferation by 17.2%. Here we show that a single IV injection of rhIL-2 positively impacted cardiac function by improving angiogenesis through a process involving NK cells.  相似文献   

20.
Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号