首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing ( Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an alpha-helical secondary structure. The final instar lacewing larvae spin protein fibers of approximately 2 microm diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.  相似文献   

3.
转蜘蛛拖牵丝蛋白基因家蚕蚕丝氨基酸组成及其机械性能   总被引:1,自引:1,他引:0  
将以绿色荧光蛋白基因为报告基因、含有人工合成的1.6 kb的蜘蛛拖牵丝蛋白基因及转座子pig-gyBac的转基因载体成功导入减秋无滞育家蚕受精卵,得到转蜘蛛拖牵丝蛋白基因家蚕及绿色荧光茧。对转基因家蚕与对照家蚕丝素蛋白进行了氨基酸组成分析,结果表明转基因蚕茧丝素蛋白甘氨酸和丙氨酸的百分含量分别增加了1.65%和1.80%(平均值);对其生丝的机械性能进行了测试研究,结果表明转基因蚕茧生丝的伸长率降低,断裂强度和初始模量增加,且差异均显著,与理论预期结果吻合。结果表明转基因家蚕蚕丝的机械性能一定程度上得到了提高。  相似文献   

4.
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials.  相似文献   

5.
Despite much interest in the extraordinary mechanical properties of silks, the structure of native silk fibers is still not fully understood. In the present study, the morphology, topography, and organization of insect and spider cocoon silks were investigated using a range of imaging methods. Field emission scanning electron microscopy was used to observe transverse and longitude structures in silk fibers subjected to tensile fracturing, freeze fracturing, or polishing. In addition, ultrathin sections of silk brins embedded in resin were examined using transmission electron microscopy. Finally, dry silk brins were examined by confocal microscopy. The results confirmed the existence of well-oriented bundles of nanofibrils in all the silks examined and gave an indication of a hierarchical construction of the brin. Observed separation of the microfibrils in fractured brins suggests that the multifibrillar structure of the silk fiber contributes to toughness by allowing dissipation of energy in the controlled propagation of cracks.  相似文献   

6.
This study investigates the relationship between birefringence and mechanical properties in the dragline silk of the gold orb weaving spider Nephila edulis. Using a custom birefringence-tensile testing device, we probed the orientation and water-induced swelling of fibers spun at variety of drawing rates ranging from 0.003 to 400 mm s(-1). Our results indicate that based upon drawing rate, silk fibers fall into three distinct regimes each with characteristic orientation and swelling properties. Further investigation using in situ tensile testing reveals interactions between a fiber's drawing speed, mechanical properties, and orientation that support previous model predictions. We propose that simultaneous birefringence-tensile testing provides a unique and readily accessible insight into the structural behavior of this interesting and important biomaterial.  相似文献   

7.
Spiders are useful models for testing different hypotheses and methodologies relating to animal personality and behavioral syndromes because they show a range of behavioral types and unique physiological traits (e.g., silk and venom) that are not observed in many other animals. These characteristics allow for a unique understanding of how physiology, behavioral plasticity, and personality interact across different contexts to affect spider''s individual fitness and survival. However, the relative effect of extrinsic factors on physiological traits (silk, venom, and neurohormones) that play an important role in spider survival, and which may impact personality, has received less attention. The goal of this review is to explore how the environment, experience, ontogeny, and physiology interact to affect spider personality types across different contexts. We highlight physiological traits, such as neurohormones, and unique spider biochemical weapons, namely silks and venoms, to explore how the use of these traits might, or might not, be constrained or limited by particular behavioral types. We argue that, to develop a comprehensive understanding of the flexibility and persistence of specific behavioral types in spiders, it is necessary to incorporate these underlying mechanisms into a synthesized whole, alongside other extrinsic and intrinsic factors.  相似文献   

8.
Transmission electron microscopy was used to investigate the supramolecular structure of Araneus diadematus (garden spider) cocoon silk. Electron diffraction patterns contain features which are consistent with the presence of non-periodic lattice crystals, i.e. highly frustrated crystalline regions as identified previously in the major ampullate silk (MAS, dragline) of Nephila clavipes spiders. The diffraction patterns further suggest that crystals in A. diadematus cocoon silk may be twisted parallel to the chain direction, offering a potential explanation for the lower tensile stiffness of this fibre relative to MAS.  相似文献   

9.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

10.
Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.  相似文献   

11.
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk.  相似文献   

12.
The silk egg case and orb web of spiders are elaborate structures that are assembled from a number of components. We analysed the structure, the amino acid and fibre compositions, and the tensile properties of the silk fibres of the egg case of Nephila clavata. SEM shows that the outer and inner covers of the egg case consist of thick, medium and thin silk fibres. The silk fibres of the outer cover of the egg case are probably produced by the major and minor ampullate glands. The silk fibres of the inner cover of the egg case from cylindrical glands appears to be distinct from the silk fibres of the major ampullate glands based on their micro-morphology, mole percent amino acid composition and types, and tensile behaviour and properties. Collectively, our investigations show that N. clavata uses silk fibres from relatively few glands in varying combinations to achieve different physical and chemical properties (e.g., color, diameter, morphology and amino acid composition) and functional and mechanical properties in the different layers of the egg case.  相似文献   

13.
《朊病毒》2013,7(4):154-161
Biomaterials, having evolved over millions of years, often exceed man?made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable.

This article focuses on the structure?function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products.  相似文献   

14.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

15.

Background

Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk.

Methods

This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk.

Results

Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland.

Conclusion

We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties.

General significance

Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms.  相似文献   

16.
17.
Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers.  相似文献   

18.
Spider dragline silk is a unique fibrous protein with a combination of tensile strength and elasticity, but the isolation of large amounts of silk from spiders is not feasible. In this study, we generated germline-transgenic silkworms (Bombyx mori) that spun cocoons containing recombinant spider silk. A piggyBac-based transformation vector was constructed that carried spider dragline silk (MaSp1) cDNA driven by the sericin 1 promoter. Silkworm eggs were injected with the vector, producing transgenic silkworms displaying DsRed fluorescence in their eyes. Genotyping analysis confirmed the integration of the MaSp1 gene into the genome of the transgenic silkworms, and silk protein analysis revealed its expression and secretion in the cocoon. Compared with wild-type silk, the recombinant silk displayed a higher tensile strength and elasticity. The results indicate the potential for producing recombinant spider silk in transgenic B. mori.  相似文献   

19.
Raman microspectroscopy has been used to quantitatively study the effect of a mechanical deformation on the conformation and orientation of Samia cynthia ricini (S. c. ricini) silk fibroin. Samples were obtained from the aqueous solution stored in the silk gland and stretched at draw ratios (lambda) ranging from 0 to 11. Using an appropriate band decomposition procedure, polarized and orientation-insensitive spectra have been analyzed to determine order parameters and the content of secondary structures, respectively. The data unambiguously show that, in response to mechanical deformation, S. c. ricini fibroin undergoes a cooperative alpha-helix to beta-sheet conformational transition above a critical draw ratio of 4. The alpha-helix content decreases from 33 to 13% when lambda increases from 0 to 11, while the amount of beta-sheets increases from 15 to 37%. In comparison, cocoon silk is devoid of alpha-helical structure and always contains a larger amount of beta-sheets. Although the presence of isosbestic points in different spectral regions reveals that the conformational change induced by mechanical deformation is a two-state process, our results suggest that part of the glycine residues might be incorporated into beta-poly(alanine) structures. The beta-sheets are initially isotropically distributed and orient along the fiber axis as lambda increases, but do not reach the high level of orientation found in the cocoon fiber. The increase in the orientation level of the beta-sheets is found to be concomitant with the alpha --> beta conformational conversion, whereas alpha-helices do not orient under the applied strain but are rather readily converted into beta-sheets. The components assigned to turns exhibit a small orientation perpendicular to the fiber axis in stretched samples, showing that, overall, the polypeptide chains are aligned along the stretching direction. Our results suggest that, in nature, factors other than stretching contribute to the optimization of the amount of beta-sheets and the high degree of orientation found in natural cocoon silk.  相似文献   

20.
The silkworm Nd-s(D) mutant is silk fibroin-secretion deficient. In the mutant, a disulfide linkage between the heavy (H) and light (L) chains, which is essential for the intracellular transport and secretion of fibroin, is not formed because of a partial deletion of the L-chain gene. To utilize the inactivity of the mutant L-chain, we investigated the possibility of using the Nd-s(D) mutant for the efficient production of recombinant proteins in the silkworm. A germ line transformation of the mutant with a normal L-chain-GFP fusion gene was performed. In the transgenic mutant, normal development of the posterior silk gland (PSG) was restored and it formed a normal cocoon. The biochemical analysis showed that the transgenic silkworms expressed the introduced gene in PSG cells, produced a large amount of the recombinant protein, secreted it into the PSG lumen, and used it to construct the cocoon. The molar ratio of silk proteins, H-chain:L-chain-GFP:fibrohexamerin, in the lumen and cocoon in the transgenic silkworm was 6:6:1, and the final product of the fusion gene formed about 10% of the cocoon silk. This indicates that the transgenic mutant silkworm possesses the capacity to produce and secrete the recombinant proteins in a molar ratio equal to that of the fibroin H-chain, contributing around half molecules of the total PSG silk proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号