首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of ankyrin, a major linking protein between spectrin and the erythrocyte membrane, was analyzed after restricted proteolytic digestion at 0 degree C. By the use of two-dimensional peptide mapping, we found that tryptic digestion of ankyrin (1 h, 0 degree C) resulted in the production of two nonoverlapping peptides of molecular weights 82,000 and 55,000. The 82,000-dalton peptide had a basic isoelectric point (7.9) and was remarkably sensitive to further proteolytic digestion; after 24 h at 0 degree C, trypsin completely digested this peptide into fragments too small to detect by gel electrophoresis. The 55,000-dalton peptide was neutral (isoelectric point = 6.9-7.2) and more resistant to further proteolytic cleavage. After a 24-h digestion with trypsin at 0 degrees C, the 55,000-dalton peptide was cleaved into two complementary fragments of molecular weight 32,000 and 15,000. Analysis of phosphorylated ankyrin indicated that the phosphates were exclusively found in these two complementary peptides. By comparison with larger fragments, we were able to align the constituent peptides of ankyrin and propose a low resolution model. Ankyrin appears to be a bipolar molecule containing a basic domain of 82,000 daltons and a neutral phosphorylated domain of 55,000 daltons.  相似文献   

2.
Oligopeptide‐binding protein A (OppA) from Lactococcus lactis binds peptides of an exceptionally wide range of lengths (4–35 residues), with no apparent sequence preference. Here, we present the crystal structures of OppA in the open‐ and closed‐liganded conformations. The structures directly explain the protein's phenomenal promiscuity. A huge cavity allows binding of very long peptides, and a lack of constraints for the position of the N and C termini of the ligand is compatible with binding of peptides with varying lengths. Unexpectedly, the peptide's amino‐acid composition (but not the exact sequence) appears to have a function in selection, with a preference for proline‐rich peptides containing at least one isoleucine. These properties can be related to the physiology of the organism: L. lactis is auxotrophic for branched chain amino acids and favours proline‐rich caseins as a source of amino acids. We propose a new mechanism for peptide selection based on amino‐acid composition rather than sequence.  相似文献   

3.
Human erythrocyte ankyrin was cleaved by restricted proteolysis at 0 degrees C into two distinct chemical domains. The site on ankyrin that binds spectrin was found to be within a 55,000-dalton domain by spectrin affinity chromatography and co-sedimentation with spectrin in a sucrose gradient. A 32,000-dalton fragment of this domain was prepared (tryptic digest, 0 degrees C, 24 h), separated by gel filtration, and shown to inhibit spectrin binding to the membrane. By comparison with previous two-dimensional peptide maps, the spectrin-binding site was located within this 32,000-dalton fragment near the end of the molecule. The band 3-binding site was identified within an 82,000-dalton domain by binding to a band 3 affinity column. Gel electrophoresis in the absence of detergents confirmed these results and demonstrated that a peptide from the cytoplasmic portion of band 3 retained the capacity to bind the 82,000-dalton domain. The binding properties of the structural domains of ankyrin were correlated with a determination of the affinity constant of the intact molecule. Ankyrin bound with a high affinity to the cytoplasmic portion of band 3 (KD = 8 X 10(-8) M) and to spectrin tetramer (KD = 1 X 10(-7) M) but less so to spectrin dimer (KD = 1 X 10(-6) M). These findings are summarized in a preliminary structural and functional model of ankyrin's role in linking spectrin to the membrane.  相似文献   

4.
5.
A cloned approximately 5 kb cDNA (human placenta) contains the coding sequences for the insulin receptor. The nucleotide sequence predicts a 1382 amino acid precursor. The alpha subunit comprises the N-terminal portion of the precursor and contains a striking cysteine-rich "cross-linking" domain. The beta-subunit (the C-terminal portion of the precursor) contains a transmembrane domain and, in the intracellular region, the elements of a tyrosine phosphokinase: an ATP-binding site and a possible tyrosine autophosphorylation site or sites. The overall structure is reminiscent of the EGF receptor; the cross-linking domain of the alpha subunit and several regions of the beta subunit exhibit sequence homology with the EGF receptor. The phosphokinase domain also exhibits homology with some oncogenic proteins that have tyrosine phosphokinase activity, in particular, a striking homology with v-ros. Southern blotting experiments suggest that the coding region spans more than 45 kb. The insulin receptor gene is located on chromosome 19.  相似文献   

6.
Highlights? LCMT-1 makes extensive contacts to PP2A active site for methylation of PP2A tail ? PP2A methylation is stimulated by phosphatase activation, hampered by inactivation ? LCMT-1 would facilitate efficient transition of activated PP2A to holoenzymes ? A high-affinity dnLCMT-1 mutant attenuates the cell cycle without causing cell death  相似文献   

7.
Peter Satir has devoted his research career to elucidating the structural basis for ciliary motility. His ingenious use of structural analysis, combined with identification of powerful model systems, provided a model for the sliding microtubule hypothesis of ciliary bending and led to the discovery that dynein is a 'minus-end'-directed motor whose regulated activity underpins the bending motion of cilia. Here, we focus on ciliary motility to illustrate Satir's pioneering contributions to cell biology.  相似文献   

8.
9.
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.  相似文献   

10.
We have recently identified high and low affinity insulin-like growth factor I (IGF I) binding sites in solubilized human placental membranes and purified the high affinity IGF I receptor by IGF I affinity chromatography (Tollefsen, S. E., Thompson, K., and Petersen, D. J. (1987) J. Biol. Chem. 262, 16461-16469). To define the structural basis for high affinity IGF I binding, we have examined the effect of disulfide bond reduction on the binding parameters of the high affinity IGF I receptor. We find that the disulfide bonds linking the two alpha beta dimers of the IGF I receptor heterotetramer are reduced by incubation at pH 8.75 with 2 mM dithiothreitol (DTT) for 5 min at room temperature. Gel filtration chromatography on a Superose 12 fast protein liquid chromatography column indicates that the alpha beta dimers do not remain associated by noncovalent interactions after reduction. Scatchard plots of IGF I binding to the IGF I receptor incubated at pH 8.75 with or without DTT indicate that the IGF I receptor alpha beta dimers have a 6.1 +/- 1.6 (mean +/- S.D.) times lower affinity than the heterotetramer for IGF I. The total binding capacity of the IGF I receptor treated with DTT is 1.6 +/- 0.3 (mean +/- S.D.) times higher than that of an equal amount of receptor treated without DTT. These results are consistent with a model in which the heterotetramer binds a single IGF I molecule with high affinity, whereas each of the two alpha beta dimers binds an IGF I molecule with lower affinity after dissociation. We conclude that association of two alpha beta dimers is required for formation of an IGF I receptor with high affinity for its ligand.  相似文献   

11.
Histidines 107 and 109 in the glycine receptor (GlyR) alpha1 subunit have previously been identified as determinants of the inhibitory zinc-binding site. Based on modeling of the GlyR alpha1 subunit extracellular domain by homology to the acetylcholine-binding protein crystal structure, we hypothesized that inhibitory zinc is bound within the vestibule lumen at subunit interfaces, where it is ligated by His107 from one subunit and His109 from an adjacent subunit. This was tested by co-expressing alpha1 subunits containing the H107A mutation with alpha1 subunits containing the H109A mutation. Although sensitivity to zinc inhibition is markedly reduced when either mutation is individually incorporated into all five subunits, the GlyRs formed by the co-expression of H107A mutant subunits with H109A mutant subunits exhibited an inhibitory zinc sensitivity similar to that of the wild type alpha1 homomeric GlyR. This constitutes strong evidence that inhibitory zinc is coordinated at the interface between adjacent alpha1 subunits. No evidence was found for beta subunit involvement in the coordination of inhibitory zinc, indicating that a maximum of two zinc-binding sites per alpha1beta receptor is sufficient for maximal zinc inhibition. Our data also show that two zinc-binding sites are sufficient for significant inhibition of alpha1 homomers. The binding of zinc at the interface between adjacent alpha1 subunits could restrict intersubunit movements, providing a feasible mechanism for the inhibition of channel activation by zinc.  相似文献   

12.
The interactions of proteins with polysaccharides play a key role in the microbial hydrolysis of cellulose and xylan, the most abundant organic molecules in the biosphere, and are thus pivotal to the recycling of photosynthetically fixed carbon. Enzymes that attack these recalcitrant polymers have a modular structure comprising catalytic modules and non-catalytic carbohydrate-binding modules (CBMs). The largest prokaryotic CBM family, CBM2, contains members that bind cellulose (CBM2a) and xylan (CBM2b), respectively. A possible explanation for the different ligand specificity of CBM2b is that one of the surface tryptophans involved in the protein-carbohydrate interaction is rotated by 90 degrees compared with its position in CBM2a (thus matching the structure of the binding site to the helical secondary structure of xylan), which may be promoted by a single amino acid difference between the two families. Here we show that by mutation of this single residue (Arg-262-->Gly), a CBM2b xylan-binding module completely loses its affinity for xylan and becomes a cellulose-binding module. The structural effect of the mutation has been revealed using NMR spectroscopy, which confirms that Trp-259 rotates 90 degrees to lie flat against the protein surface. Except for this one residue, the mutation only results in minor changes to the structure. The mutated protein interacts with cellulose using the same residues that the wild-type CBM2b uses to interact with xylan, suggesting that the recognition is of the secondary structure of the polysaccharide rather than any specific recognition of the absence or presence of functional groups.  相似文献   

13.
The receptor for epidermal growth factor (EGF) has been the subject of intense study primarily as a consequence of the pioneering studies of Cohen on growth factors and also because of its homology to the transforming protein encoded by the avian oncogene v-erbB, which is a truncated receptor, and its consequent role in cancer. Although similar structural mutation of the EGF receptor has not yet been found in human tumours, aberrant overexpression of both EGF receptors and c-erbB2, a closely related putative receptor [1], have been found to occur in squamous cell carcinomas and glial tumours, and mammary carcinomas respectively [2–4]. In addition to EGF, the related polypeptides transforming growth factor α (TGFα) and vaccinia virus growth factor [5] are also ligands for the EGF receptor. Expression of TGFα occurs during embryonal development and in specific adult tissues; it may also play a role in cellular transformation (reviewed in Ref. 6). These important properties, as well as the potential roles of both TGFα and EGF in wound repair, have emphasized the need to understand EGF receptor structure, function and regulation. This review discusses the structural properties of the EGF receptor and how these can be related to receptor function and regulation.  相似文献   

14.
Structural basis of the function of endothelin receptor   总被引:9,自引:0,他引:9  
Endothelin receptor is a good model for analysis of the function of heptahelical G-protein coupled receptor. In ligand binding to the heptahelical receptor, the receptor has two functions, i.e. message and address functions. Each function has been assigned to different domain of the receptor. A different part of the ligand structure also corresponds to each domain of the receptor. Classically, classification of receptor has been done according to the difference of address domain, i.e. affinity difference of the receptor. However, present results predict that the classification of receptor is also possible according to the message domain.After stimulation of ET receptor by a ligand, the receptor transmits a signal to G-protein. Several kinds of G-proteins can possibly be activated. Different structural domains of the receptor are assigned to the coupling of the different G-protein. Activated G-protein transmits the message to effector. Each G-protein acts on different target molecules, resulting in different responses. However, the activation of each G-protein presumably depends on its intracellular level. Even if the same receptor is activated with the same ligand, resulting final response is different from cell to cell. Therefore, classification of receptor according to the function of the receptor is difficult.  相似文献   

15.
An account is given of the ultrastructure and optical properties of the structural colour scales of Papilio karna and P.palinurus. The scales are Urania-type multilayers of 10 lamellae separated by air-spaces. A theoretical model is elaborated to account for the results and it is concluded that colour variation between species is achieved through control of film thickness. It is proposed that the surface structure functions as an anti-reflection coating. A generalised functional basis for the structural difference between Urania-type and Morpho-type scales is suggested.  相似文献   

16.
Structural basis of beta-adrenergic receptor function   总被引:31,自引:0,他引:31  
Receptors that mediate their actions by stimulating guanine nucleotide binding regulatory proteins (G proteins) share structural as well as functional similarities. The structural motif characteristic of receptors of this class includes seven hydrophobic putative transmembrane domains linked by hydrophilic loops. Genetic analysis of the beta-adrenergic receptor (beta AR) revealed that the ligand binding domain of this receptor, like that of rhodopsin, involves residues within the hydrophobic core of the protein. On the basis of these studies, a model for ligand binding to the receptor has been developed in which the amino group of an agonist or antagonist is anchored to the receptor through the carboxylate side chain of Asp113 in the third transmembrane helix. Other interactions between specific residues of the receptor and functional groups on the ligand have also been proposed. The interaction between the beta AR and the G protein Gs has been shown to involve an intracellular region that is postulated to form an amphiphilic alpha helix. This region of the beta AR is also critical for sequestration, which accompanies agonist-mediated desensitization, to occur. Structural similarities among G protein-linked receptors suggest that the information gained from the genetic analysis of the beta AR should help define functionally important regions of other receptors of this class.  相似文献   

17.
18.
Antizyme inhibitor (AzI) regulates cellular polyamine homeostasis by binding to the polyamine-induced protein, Antizyme (Az), with greater affinity than ornithine decarboxylase (ODC). AzI is highly homologous to ODC but is not enzymatically active. In order to understand these specific characteristics of AzI and its differences from ODC, we determined the 3D structure of mouse AzI to 2.05 A resolution. Both AzI and ODC crystallize as a dimer. However, fewer interactions at the dimer interface, a smaller buried surface area, and lack of symmetry of the interactions between residues from the two monomers in the AzI structure suggest that this dimeric structure is nonphysiological. In addition, the absence of residues and interactions required for pyridoxal 5'-phosphate (PLP) binding suggests that AzI does not bind PLP. Biochemical studies confirmed the lack of PLP binding and revealed that AzI exists as a monomer in solution while ODC is dimeric. Our findings that AzI exists as a monomer and is unable to bind PLP provide two independent explanations for its lack of enzymatic activity and suggest the basis for its enhanced affinity toward Az.  相似文献   

19.
20.
The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号