首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Drosophila Apaf-1 related killer (Dark) forms an apoptosome that activates Dronc, an apical procaspase in the intrinsic cell death pathway. To study this process, we assembled a large Dark complex in the presence of dATP. Remarkably, we found that cytochrome c was not required for assembly and when added, cytochrome c did not bind to the Dark complex. We then determined a 3D structure of the Dark complex at 18.8A resolution using electron cryo-microscopy and single particle methods. In the structure, eight Dark subunits form a wheel-like particle and two of these rings associate face-to-face. In contrast, Apaf-1 forms a single ring that is comprised of seven subunits and each Apaf-1 binds a molecule of cytochrome c. We then used relevant crystal structures to model the Dark complex. This analysis shows that a single Dark ring and the Apaf-1 apoptosome share many key features. When taken together, the data suggest that a single ring in the Dark complex may represent the Drosophila apoptosome. Thus, our analysis provides a domain model of this complex and gives insights into its function.  相似文献   

2.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

3.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

4.
The apoptosome is an Apaf-1 cytochrome c complex that activates procaspase-9. The three-dimensional structure of the apoptosome has been determined at 27 A resolution, to reveal a wheel-like particle with 7-fold symmetry. Molecular modeling was used to identify the caspase recruitment and WD40 domains within the apoptosome and to infer likely positions of the CED4 homology motif and cytochrome c. This analysis suggests a plausible role for cytochrome c in apoptosome assembly. In a subsequent structure, a noncleavable mutant of procaspase-9 was localized to the central region of the apoptosome. This complex promotes the efficient activation of procaspase-3. Therefore, the cleavage of procaspase-9 is not required to form an active cell death complex.  相似文献   

5.
Bcl-2 and its relative, Bcl-xL, inhibit apoptotic cell death primarily by controlling the activation of caspase proteases. Previous reports have suggested at least two distinct mechanisms: Bcl-2 and Bcl-xL may inhibit either the formation of the cytochrome c/Apaf-1/caspase-9 apoptosome complex (by preventing cytochrome c release from mitochondria) or the function of this apoptosome (through a direct interaction of Bcl-2 or Bcl-xL with Apaf-1). To evaluate this latter possibility, we added recombinant Bcl-xL protein to cell-free apoptotic systems derived from Jurkat cells and Xenopus eggs. At low concentrations (50 nM), Bcl-xL was able to block the release of cytochrome c from mitochondria. However, although Bcl-xL did associate with Apaf-1, it was unable to inhibit caspase activation induced by the addition of cytochrome c, even at much higher concentrations (1-5 microM). These observations, together with previous results obtained with Bcl-2, argue that Bcl-xL and Bcl-2 cannot block the apoptosome-mediated activation of caspase-9.  相似文献   

6.
We report here the biochemical analysis of the reconstituted de novo procaspase-9 activation using highly purified cytochrome c, recombinant apoptotic protease-activating factor-1 (Apaf-1), and recombinant procaspase-9. Using a nucleotide binding assay, we found that Apaf-1 alone bound dATP poorly and the nucleotide binding to Apaf-1 was significantly stimulated by cytochrome c. The binding of dATP to Apaf-1 induces the formation of a multimeric Apaf-1. cytochrome c complex, apoptosome. Procaspase-9 also synergistically promotes dATP binding to Apaf-1 in a cytochrome c-dependent manner. The dATP bound to apoptosome remained as dATP, not dADP. A nonhydrolyzable ATP analog, ADPCP (beta,gamma-methylene adenosine 5'-triphosphate), was able to support apoptosome formation and caspase activation in place of dATP or ATP. These data indicate that the key event in Apaf-1-mediated caspase-9 activation is cytochrome c-induced dATP binding to Apaf-1.  相似文献   

7.
To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we produced recombinant full-length Apaf-1 and purified it to complete homogeneity. Here we show using gel filtration that full-length Apaf-1 exists as a monomer that can be transformed to an oligomeric complex made of at least eight subunits after binding to cytochrome c and dATP. Apaf-1 binds to cytochrome c in the absence of dATP but does not form the oligomeric complex. However, when dATP is added to the cytochrome c-bound Apaf-1 complex, complete oligomerization occurs, suggesting that oligomerization is driven by hydrolysis of dATP. This was supported by the observation that ATP, but not the nonhydrolyzable adenosine 5'-O-(thiotriphosphate), can induce oligomerization of the Apaf-1-cytochrome c complex. Like the spontaneously oligomerizing Apaf-530, which lacks its WD-40 domain, the oligomeric full-length Apaf-1-cytochrome c complex can bind and process procaspase-9 in the absence of additional dATP or cytochrome c. However, unlike the truncated Apaf-530 complex, the full-length Apaf-1 complex can release the mature caspase-9 after processing. Once released, mature caspase-9 can process procaspase-3, setting into motion the caspase cascade. These observations indicate that cytochrome c and dATP are required for oligomerization of Apaf-1 and suggest that the WD-40 domain plays an important role in oligomerization of full-length Apaf-1 and the release of mature caspase-9 from the Apaf-1 oligomeric complex.  相似文献   

8.
The Drosophila Apaf-1 related killer forms an apoptosome in the intrinsic cell death pathway. In this study we show that Dark forms a single ring when initiator procaspases are bound. This Dark-Dronc complex cleaves DrICE efficiently; hence, a single ring represents the Drosophila apoptosome. We then determined the 3D structure of a double ring at ~6.9?? resolution and created a model of the apoptosome. Subunit interactions in the Dark complex are similar to those in Apaf-1 and CED-4 apoptosomes, but there are significant differences. In particular, Dark has "lost" a loop in the nucleotide-binding pocket, which opens a path for possible dATP exchange in the apoptosome. In addition, caspase recruitment domains (CARDs) form a crown on the central hub of the Dark apoptosome. This CARD geometry suggests that conformational changes will be required to form active Dark-Dronc complexes. When taken together, these data provide insights into apoptosome structure, function, and evolution.  相似文献   

9.
During apoptosis, release of cytochrome c initiates dATP-dependent oligomerization of Apaf-1 and formation of the apoptosome. In a cell-free system, we have addressed the order in which apical and effector caspases, caspases-9 and -3, respectively, are recruited to, activated and retained within the apoptosome. We propose a multi-step process, whereby catalytically active processed or unprocessed caspase-9 initially binds the Apaf-1 apoptosome in cytochrome c/dATP-activated lysates and consequently recruits caspase-3 via an interaction between the active site cysteine (C287) in caspase-9 and a critical aspartate (D175) in caspase-3. We demonstrate that XIAP, an inhibitor-of-apoptosis protein, is normally present in high molecular weight complexes in unactivated cell lysates, but directly interacts with the apoptosome in cytochrome c/dATP-activated lysates. XIAP associates with oligomerized Apaf-1 and/or processed caspase-9 and influences the activation of caspase-3, but also binds activated caspase-3 produced within the apoptosome and sequesters it within the complex. Thus, XIAP may regulate cell death by inhibiting the activation of caspase-3 within the apoptosome and by preventing release of active caspase-3 from the complex.  相似文献   

10.
Apaf-1 and cytochrome c coassemble in the presence of dATP to form the apoptosome. We have determined a structure of the apoptosome at 12.8 A resolution by using electron cryomicroscopy and single-particle methods. We then docked appropriate crystal structures into the map to create an accurate domain model. Thus, we found that seven caspase recruitment domains (CARDs) form a central ring within the apoptosome. At a larger radius, seven copies of the nucleotide binding and oligomerization domain (NOD) associate laterally to form the hub, which encircles the CARD ring. Finally, an arm-like helical domain (HD2) links each NOD to a pair of beta propellers, which bind a single cytochrome c. This model provides insights into the roles of dATP and cytochrome c in assembly. Our structure also reveals how a CARD ring and the central hub combine to create a platform for procaspase-9 activation.  相似文献   

11.
In many forms of apoptosis, cytochrome c released from mitochondria induces the oligomerization of Apaf-1 to form a caspase-activating apoptosome complex. Activation of lysates in vitro with dATP and cytochrome c results in the formation of an active caspase-processing approximately 700-kDa apoptosome complex, which predominates in apoptotic cells, and a relatively inactive approximately 1.4-MDa complex. We now demonstrate that assembly of the active complex is suppressed by normal intracellular concentrations of K(+). Using a defined apoptosome reconstitution system with recombinant Apaf-1 and cytochrome c, K(+) also inhibits caspase activation by abrogating Apaf-1 oligomerization and apoptosome assembly. Once assembled, the apoptosome is relatively insensitive to the effects of ionic strength and processes/activates effector caspases. The inhibitory effects of K(+) on apoptosome formation are antagonized in a concentration-dependent manner by cytochrome c. These studies support the hypothesis that the normal intracellular concentrations of K(+) act to safeguard the cell against inappropriate formation of the apoptosome complex, caused by the inadvertent release of small amounts of cytochrome c. Thus, the assembly and activation of the apoptosome complex in the cell requires the rapid and extensive release of cytochrome c to overcome the inhibitory effects of normal intracellular concentrations of K(+).  相似文献   

12.
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.  相似文献   

13.
Apo cytochrome c inhibits caspases by preventing apoptosome formation   总被引:2,自引:0,他引:2  
Caspases are cysteine proteases and potent inducers of apoptosis. Their activation and activity is therefore tightly regulated. There are several mechanisms by which caspases can be activated but one key pathway involves release of holo cytochrome c from mitochondria into the cytoplasm. Cytoplasmic holo cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1), driving the formation of an Apaf-1 oligomer (the apoptosome) which in turn binds and activates caspase-9. Previously we showed that the apo form of cytochrome c (lacking heme) can bind Apaf-1 and block both holo-dependent caspase activation in cell extracts and Bax-induced apoptosis in cells. Here we tested the ability of apo cytochrome c to inhibit caspase-9 activation induced by recombinant Apaf-1. Furthermore, using purified proteins and size exclusion chromatography we show that apo cytochrome c prevents holo cytochrome c-dependent apoptosome formation.  相似文献   

14.
Negative regulation of the Apaf-1 apoptosome by Hsp70   总被引:1,自引:0,他引:1  
Release of cytochrome c from mitochondria by apoptotic signals induces ATP/dATP-dependent formation of the oligomeric Apaf-1-caspase-9 apoptosome. Here we show that the documented anti-apoptotic effect of the principal heat-shock protein, Hsp70, is mediated through its direct association with the caspase-recruitment domain (CARD) of Apaf-1 and through inhibition of apoptosome formation. The interaction between Hsp70 and Apaf-1 prevents oligomerization of Apaf-1 and association of Apaf-1 with procaspase-9. On the basis of these results, we propose that resistance to apoptosis exhibited by stressed cells and some tumours, which constitutively express high levels of Hsp70, may be due in part to modulation of Apaf-1 function by Hsp70.  相似文献   

15.
The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals.  相似文献   

16.
As a component of the apoptosome, a caspase-activating complex, Apaf-1 plays a central role in the mitochondrial caspase activation pathway of apoptosis. We report here the identification of a novel Apaf-1 interacting protein, hepatocellular carcinoma antigen 66 (HCA66) that is able to modulate selectively Apaf-1-dependent apoptosis through its direct association with the CED4 domain of Apaf-1. Expression of HCA66 was able to potentiate Apaf-1, but not receptor-mediated apoptosis, by increasing downstream caspase activity following cytochrome c release from the mitochondria. Conversely, cells depleted of HCA66 were severely impaired for apoptosome-dependent apoptosis. Interestingly, expression of the Apaf-1-interacting domain of HCA66 had the opposite effect of the full-length protein, interfering with the Apaf-1 apoptotic pathway. Using a cell-free system, we showed that reduction of HCA66 expression was associated with a diminished amount of caspase-9 in the apoptosome, resulting in a lower ability of the apoptosome to activate caspase-3. HCA66 maps to chromosome 17q11.2 and is among the genes heterozygously deleted in neurofibromatosis type 1 (NF1) microdeletion syndrome patients. These patients often have a distinct phenotype compared to other NF1 patients, including a more severe tumour burden. Our results suggest that reduced expression of HCA66, owing to haploinsufficiency of HCA66 gene, could render NF1 microdeleted patients-derived cells less susceptible to apoptosis.  相似文献   

17.
As components of the apoptosome, a caspase-activating complex, cytochrome c (Cyt c) and Apaf-1 are thought to play critical roles during apoptosis. Due to the obligate function of Cyt c in electron transport, its requirement for apoptosis in animals has been difficult to establish. We generated "knockin" mice expressing a mutant Cyt c (KA allele), which retains normal electron transfer function but fails to activate Apaf-1. Most KA/KA mice displayed embryonic or perinatal lethality caused by defects in the central nervous system, and surviving mice exhibited impaired lymphocyte homeostasis. Although fibroblasts from the KA/KA mice were resistant to apoptosis, their thymocytes were markedly more sensitive to death stimuli than Apaf-1(-/-) thymocytes. Upon treatment with gamma irradiation, procaspases were efficiently activated in apoptotic KA/KA thymocytes, but Apaf-1 oligomerization was not observed. These studies indicate the existence of a Cyt c- and apoptosome-independent but Apaf-1-dependent mechanism(s) for caspase activation.  相似文献   

18.
Apoptosis, a form of programmed cell death, is executed by a family of zymogenic proteases known as caspases, which cleave an array of intracellular substrates in the dying cell. Many proapoptotic stimuli trigger cytochrome c release from mitochondria, promoting the formation of a complex between Apaf-1 and caspase-9 in a caspase-activating structure known as the apoptosome. In this review, we describe knockout and knockin studies of apoptosome components, elegant structural and biochemical experiments, and analyses of the apoptosome in various cancers and other disease states, all of which have provided new insight into this critical locus of apoptotic control.  相似文献   

19.
Bao Q  Lu W  Rabinowitz JD  Shi Y 《Molecular cell》2007,25(2):181-192
Apaf-1 plays an essential role in apoptosis. In the presence of cytochrome c and dATP, Apaf-1 assembles into an oligomeric apoptosome, which is responsible for the activation of procaspase-9 and the maintenance of the enzymatic activity of the processed caspase-9. Regulation of apoptosome assembly by other cellular factors is poorly understood. Here we report that physiological concentrations of calcium ion negatively affect the assembly of apoptosome by inhibiting nucleotide exchange in the monomeric, autoinhibited Apaf-1 protein. Consequently, calcium blocks the ability of Apaf-1 to activate caspase-9. These observations suggest an important role of calcium homeostasis on the Apaf-1-dependent apoptotic pathway.  相似文献   

20.
In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号