首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a role for two evolutionarily related, secreted metalloproteases of the ADAMTS family, ADAMTS20 and ADAMTS9, in palatogenesis. Adamts20 mutations cause the mouse white-spotting mutant belted (bt), whereas Adamts9 is essential for survival beyond 7.5 days gestation (E7.5). Functional overlap of Adamts9 with Adamts20 was identified using Adamts9(+/-);bt/bt mice, which have a fully penetrant cleft palate. Palate closure was delayed, although eventually completed, in both Adamts9(+/-);bt/+ and bt/bt mice, demonstrating cooperation of these genes. Adamts20 is expressed in palatal mesenchyme, whereas Adamts9 is expressed exclusively in palate microvascular endothelium. Palatal shelves isolated from Adamts9(+/-);bt/bt mice fused in culture, suggesting an intact epithelial TGFβ3 signaling pathway. Cleft palate resulted from a temporally specific delay in palatal shelf elevation and growth towards the midline. Mesenchyme of Adamts9(+/-);bt/bt palatal shelves had reduced cell proliferation, a lower cell density and decreased processing of versican (VCAN), an extracellular matrix (ECM) proteoglycan and ADAMTS9/20 substrate, from E13.5 to E14.5. Vcan haploinsufficiency led to greater penetrance of cleft palate in bt mice, with a similar defect in palatal shelf extension as Adamts9(+/-);bt/bt mice. Cell density was normal in bt/bt;Vcan(hdf)(/+) mice, consistent with reduced total intact versican in ECM, but impaired proliferation persisted in palate mesenchyme, suggesting that ADAMTS-cleaved versican is required for cell proliferation. These findings support a model in which cooperative versican proteolysis by ADAMTS9 in vascular endothelium and by ADAMTS20 in palate mesenchyme drives palatal shelf sculpting and extension.  相似文献   

2.
ADAMTS5 has been implicated in the degradation of cartilage aggrecan in human osteoarthritis. Here, we describe a novel role for the enzyme in the regulation of TGFβ1 signaling in dermal fibroblasts both in vivo and in vitro. Adamts5(-/-) mice, generated by deletion of exon 2, exhibit impaired contraction and dermal collagen deposition in an excisional wound healing model. This was accompanied by accumulation in the dermal layer of cell aggregates and fibroblastic cells surrounded by a pericellular matrix enriched in full-length aggrecan. Adamts5(-/-) wounds exhibit low expression (relative to wild type) of collagen type I and type III but show a persistently elevated expression of tgfbRII and alk1. Aggrecan deposition and impaired dermal repair in Adamts5(-/-) mice are both dependent on CD44, and Cd44(-/-)/Adamts5(-/-) mice display robust activation of TGFβ receptor II and collagen type III expression and the dermal regeneration seen in WT mice. TGFβ1 treatment of newborn fibroblasts from wild type mice results in Smad2/3 phosphorylation, whereas cells from Adamts5(-/-) mice phosphorylate Smad1/5/8. The altered TGFβ1 response in the Adamts5(-/-) cells is dependent on the presence of aggrecan and expression of CD44, because Cd44(-/-)/Adamts5(-/-) cells respond like WT cells. We propose that ADAMTS5 deficiency in fibrous tissues results in a poor repair response due to the accumulation of aggrecan in the pericellular matrix of fibroblast progenitor cells, which prevents their transition to mature fibroblasts. Thus, the capacity of ADAMTS5 to modulate critical tissue repair signaling events suggests a unique role for this enzyme, which sets it apart from other members of the ADAMTS family of proteases.  相似文献   

3.
ADAMTS20 (Adisintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kit(tm1Alf)/+ and bt/bt;Kitl(Sl)/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases.  相似文献   

4.
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.  相似文献   

5.
The objective was to study Dupuytren's myofibroblast cells in constrained collagen matrices in order to more closely emulate their in vivo environment and, to correlate their contractility with α‐smooth muscle actin (α‐SMA) expression and determine if dermal fibroblasts regulate Dupuytren's myofibroblast phenotype. Isotonic and isometric force contraction by cells isolated from Dupuytren's nodules, palmar and non‐palmar skin fibroblasts was measured in collagen matrices. The effect of co‐culturing nodule cells with dermal fibroblasts on isometric contraction was examined. Isometric contraction was correlated with levels of α‐SMA mRNA by pcr and protein by Western blotting, and α‐SMA distribution assessed by immunofluorescence. Dupuytren's nodule cells exhibited similar levels of isotonic contraction to both palmar and non‐palmar dermal fibroblasts. However, nodule cells generated high levels of isometric force (mean: 3.5 dynes/h), which continued to increase over 24 h to a maximum of 173 dynes. In contrast, dermal fibroblasts initially exhibited low levels of contraction (mean: 0.5 dynes/h) and reached tensional homeostasis on average after 15 h (range: 4–20 h), with a maximum force of 52 dynes. Although all three cell types had similar α‐SMA mRNA levels, increased levels of α‐SMA protein were observed in nodule cells compared to dermal fibroblasts. α‐SMA localised to stress fibres in 35% (range: 26–50%) of nodule cells compared to only 3% (range:0–6%) of dermal fibroblasts. Co‐cultures of Dupuytren's cells and dermal fibroblasts showed no contractile differences. The contractile phenotype of Dupuytren's myofibroblasts is determined by increased α‐SMA protein distributed in stress fibres, not by cellular mRNA levels. Dupuytren's cell contractility is not influenced by dermal fibroblasts. J. Cell. Physiol. 224: 681–690, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR212↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position 441E↓A442. In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.  相似文献   

7.
The aggrecanase ADAMTS5 (A Disintegrin and Metalloproteinase with ThromboSpondin type 1 motifs, member 5) and the cleavage of its substrate versican have been implicated in the development of heart valves. Furthermore, ADAMTS5 deficiency was shown to protect against diet‐induced obesity, a known risk factor for cardiovascular disease. Therefore, in this study, we investigated the potential role of ADAMTS5 in cardiac function using ADAMTS5‐deficient (Adamts5?/?) mice and their wild‐type (Adamts5+/+) counterparts exposed to a standard‐fat or a high‐fat diet (HFD). Eight‐weeks‐old Adamts5?/? and Adamts5+/+ mice were exposed to each diet for 15 weeks. Cardiac function and electrophysiology were analyzed by transthoracic echocardiogram and electrocardiogram at the end of the study. Cleavage of versican, as detected by the appearance of the DPEEAE neo‐epitope on western blotting with protein extracts, was defective in the heart of HFD‐treated Adamts5?/? as compared with Adamts5+/+ mice. ADAMTS5 deficiency led to statistically significant increases in diastolic posterior wall thickness (0.94 ± 0.023 vs. 0.82 ± 0.036 mm; P = 0.0056) and left ventricle volume (47 ± 4.5 vs. 31 ± 2.5 μL; P = 0.0043) in comparison to Adamts5+/+ mice, but only in animals on a HFD. Cardiac function parameters such as ejection fraction, fractional shortening, and stroke volume were unaffected by ADAMTS5 deficiency or diet. Electrocardiogram analysis revealed no ADAMTS5‐specific changes in either diet group. Thus, in the absence of ADAMTS5, cleavage of versican in the cardiac extracellular matrix is impaired, but cardiac function, even upon exposure to a HFD, is not markedly affected.  相似文献   

8.
ADAMTS5 (TS5), a member of the aggrecanase clade (TS1, 4, 5, 8, 9, 15) of ADAMTS-proteases, has been considered largely responsible for the proteolysis of the hyalectans, aggrecan (Acan) and versican (Vcan), in vivo. However, we have reported that ts5-knockout (KO) mice show joint protection after injury due to inhibition of synovial scarring and enhanced Acan deposition. Also, KO mice have an impaired wound healing phenotype in skin and tendons which is associated with Acan/Vcan-rich deposits at the wound sites. Moreover, the Acan and Vcan deposited was aggrecanase-cleaved, even in the absence of TS5. In this study, we have used adipose-derived stromal cell (ADSC) and epiphyseal chondrocyte cultures from wild type and KO mice to further study the role of TS5 in Acan and Vcan turnover. We have confirmed with both cell types that the aggrecanase-mediated degradation of these hyalectans is not due to TS5, but an aggrecanase which primarily cleaves them before they are secreted. We also provide data which suggests that TS5 protein functions to suppress glucose uptake in ADSCs and thereby inhibits the synthesis, and promotes the intracellular degradation of Acan and Vcan by an ADAMTS other than TS5. We propose that this apparently non-proteolytic role of TS5 explains its anti-chondrogenic and pro-fibrotic effects in murine models of wound repair. A possible role for TS5 in an endocytotic process, involving competitive interactions between TS5, LRP1 and GLUT4 is discussed.  相似文献   

9.
In fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease.  相似文献   

10.
Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2(-/-) mice showed widespread defects in procollagen III processing. Adamts2(-/-) mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis. The data show how evolutionarily related proteases with similar substrate preferences may have distinct biological roles owing to tissue-specific gene expression, and provide insights into collagen biosynthesis and the pathobiology of dermatosparaxis.  相似文献   

11.
Here, we demonstrate that ADAMTS9, a highly conserved versican-degrading protease, is required for correct cardiovascular development and adult homeostasis. Analysis of Adamts9+/LacZ adult mice revealed anomalies in the aortic wall, valvulosinus and valve leaflets. Abnormal myocardial projections and ‘spongy’ myocardium consistent with non-compaction of the left ventricle were also found in Adamts9+/LacZ mice. During development, Adamts9 was expressed in derivatives of the Secondary Heart Field, vascular smooth muscle cells in the arterial wall, mesenchymal cells of the valves, and non-myocardial cells of the ventricles, but expression also continued in the adult heart and ascending aorta. Thus, the adult cardiovascular anomalies found in Adamts9+/LacZ hearts could result from subtle developmental alterations in extracellular matrix remodeling or defects in adult homeostasis. The valvular and aortic anomalies of Adamts9+/LacZ hearts were associated with accumulation of versican and a decrease in cleaved versican relative to WT littermates. These data suggest a potentially important role for ADAMTS9 cleavage of versican, or other, as yet undefined substrates in development and allostasis of cardiovascular extracellular matrix. In addition, these studies identify ADAMTS9 as a potential candidate gene for congenital cardiac anomalies. Mouse models of ADAMTS9 deficiency may be useful to study myxomatous valve degeneration.  相似文献   

12.

Background

ADAMTS13 is the physiological von Willebrand factor (VWF)-cleaving protease. The aim of this study was to examine ADAMTS13 expression in kidneys from ADAMTS13 wild-type (Adamts13+/+) and deficient (Adamts13−/−) mice and to investigate the expression pattern and bioactivity in human glomerular endothelial cells.

Methodology/Principal Findings

Immunohistochemistry was performed on kidney sections from ADAMTS13 wild-type and ADAMTS13-deficient mice. Phenotypic differences were examined by ultramorphology. ADAMTS13 expression in human glomerular endothelial cells and dermal microvascular endothelial cells was investigated by real-time PCR, flow cytometry, immunofluorescence and immunoblotting. VWF cleavage was demonstrated by multimer structure analysis and immunoblotting. ADAMTS13 was demonstrated in glomerular endothelial cells in Adamts13+/+ mice but no staining was visible in tissue from Adamts13−/− mice. Thickening of glomerular capillaries with platelet deposition on the vessel wall was detected in Adamts13−/− mice. ADAMTS13 mRNA and protein were detected in both human endothelial cells and the protease was secreted. ADAMTS13 activity was demonstrated in glomerular endothelial cells as cleavage of VWF.

Conclusions/Significance

Glomerular endothelial cells express and secrete ADAMTS13. The proteolytic activity could have a protective effect preventing deposition of platelets along capillary lumina under the conditions of high shear stress present in glomerular capillaries.  相似文献   

13.
Hyaluronan (HA) and versican are key components of the dermis and are responsive to ultraviolet (UV)B-induced remodeling. The aim of this study was to explore the molecular mechanisms mediating the effects of estrogen (E(2)) on HA-rich extracellular matrix during photoaging. Hairless skh-1 mice were irradiated with UVB (three times, 1 minimal erythema dose (80 mJ/cm(2)), weekly) for 10 weeks, and endogenous sex hormone production was abrogated by ovariectomy. Subcutaneous substitution of E(2) by means of controlled-release pellets caused a strong increase in the dermal HA content in both irradiated and nonirradiated skin. The increase in dermal HA correlated with induction of HA synthase HAS3 by E(2). Expression of splice variant 2 of the HA-binding proteoglycan versican was also increased by E(2). In search of candidate mediators of these effects, it was found that E(2) strongly induced the expression of epidermal growth factor (EGF) in UVB-irradiated epidermis in vivo and in keratinocytes in vitro. EGF in turn up-regulated the expression of HAS3 and versican V2 in dermal fibroblasts. HAS3 knockdown by shRNA caused inhibition of fibroblast proliferation. Furthermore, HAS3 and versican V2 induction by E(2) correlated positively with proliferation in vivo. In addition, the accumulation of inflammatory macrophages, expression of inducible cyclooxygenase 2, as well as proinflammatory monocyte chemotactic protein 1 were decreased in response to E(2) in the dermis. Collectively, these data suggest that E(2) treatment increases the amount of dermal HA and versican V2 via paracrine release of EGF, which may be implicated in the pro-proliferative and anti-inflammatory effects of E(2) during photoaging.  相似文献   

14.
In granulation tissue the myofibroblast, a specialized fibroblast characterized by cytoplasmic stress fibres with alpha smooth muscle actin (SMA), develops from mechano-tension between cells. In vitro the myofibroblast phenotype can be induced in the absence of obvious tension by plating human dermal fibroblasts at low density (LD). Upon reaching confluence the LD-plated cells express alpha SMA within stress fibres. In contrast, few cells express alpha SMA when those same fibroblasts are plated at high density (HD). Cadherins, trans-membrane proteins, and link cells tie the cytoskeletal stress fibres of neighbouring cells together. By immunohistology myofibroblasts (LD-plated fibroblasts) are shown to express cadherin-11 on their surface and between cells, while HD-plated fibroblasts expressed less cadherin-11 on their surface. Western blot analysis revealed elevated concentrations of cadherin-11 and alpha SMA in confluent LD-plated cell lysates. Reduced amounts of both proteins were found in confluent HD-plated cell lysates. Plating fibroblasts on collagen inhibits alpha SMA synthesis. When confluent LD-plated myofibroblasts were covered with a collagen lattice for 24 h, both the expression of cadherin-11 and alpha SMA were reduced by 50%. There is the possibility that direct linkage of the cytoskeleton stress fibres by cell surface cadherins maintains tension between neighbouring cells, which induces alpha SMA expression in stress fibres. Cell contact with collagen reduces cadherin expression, which may eliminate the generation of mechano-tension between fibroblasts. The other possibility is that the myofibroblast phenotype may be induced by factors other than mechano-tension.  相似文献   

15.
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan in the extracellular matrix, and is expressed at high levels in tissues during development and remodeling in pathological conditions. Its core protein is cleaved at a region close to the N-terminal end of CSβ domain by several members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, i.e., ADAMTS-1, 4, 5, 9, 15, and 20. Here, using a CRISPR/Cas9 system, we generated knock-in mice (V1R), which express an ADAMTS cleavage-resistant versican. Some V1R homozygote mice, termed R/R, exhibit syndactyly and organ hemorrhage. In wound healing experiments, R/R wound shows accumulation of versican and activated TGFβ-signaling in the early stage, leading to faster healing than wild type wound. Immunostaining for Ki67, CD31, smooth muscle α-actin, periostin demonstrates higher levels of overall cell proliferation and an increased number of endothelial cells and myofibroblasts. Immunostaining for CD11b and qRT-PCR for macrophage markers revealed increased levels of inflammatory cell infiltration, especially those of M1 macrophages. Cultured R/R dermal fibroblasts revealed increased deposition of versican, type I and III collagens, and hyaluronan, and upregulation of Smad2/3 signaling. Taken together, these results demonstrate that the cleavage site determines versican turnover and that versican plays a central role in the provisional matrix during the wound repair.  相似文献   

16.

Background

Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).

Methods

Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.

Results

The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.

Conclusion

During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts.  相似文献   

17.
Dermal fibroblasts/myofibroblasts involved in the wound healing are thought to originate from the resident fibroblast progenitors. To test the hypothesis of an extra dermal origin of the dermal fibroblasts/myofibroblasts, bone marrow (BM) transplantation and parabiosis experiments were initiated utilizing a collagen promoter green fluorescent protein (GFP) reporter transgene as a visible marker for dermal fibroblasts/myofibroblasts. BM transplantation experiments using BM from Col3.6GFPsapph transgenic mice showed no evidence that BM derived progenitors differentiated into dermal fibroblasts/myofibroblasts at the wound site. Rather the GFP positive cells (GFP+) observed at the wound site were not dermal fibroblasts/myofibroblasts but immune cells. These GFP+ cells were also detected in the lung and spleen. Furthermore, GFP+ fibroblasts were not detected in primary dermal fibroblast cultures initiated from BM chimeras. Using the same transgenic mice, parabiotic pairs were generated. One partner in the parabiosis carried a GFP expressing transgene while the other partner was a non‐transgenic C57BL/6 mouse. Similar to the BM transplantation experiments, GFP+ immune cells were detected in the wound of the non‐transgenic parabiont, however, GFP expressing dermal fibroblasts/myofibroblasts were not observed. Collectively, these data suggest that dermal fibroblast/myofibroblast progenitors do not readily circulate. The expression of the Col3.6GFPsapph in the hematopoietic cells confirmed that our methods were sensitive enough to detect Col3.6GFP expressing dermal fibroblasts derived from the peripheral circulation if they had originated in the BM. J. Cell. Physiol. 222: 703–712, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The chondroitin sulfate-bearing proteoglycans, also known as lecticans, are a major component of the extracellular matrix (ECM) in the central nervous system and regulate neural plasticity. Growing evidence indicates that endogenous, extracellular metalloproteinases that cleave lecticans mediate neural plasticity by altering the structure of ECM aggregates. The bulk of this in vivo data examined the matrix metalloproteinases, but another metalloproteinase family that cleaves lecticans, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), modulates structural plasticity in vitro, although few in vivo studies have tested this concept. Thus, the purpose of this study was to examine the neurological phenotype of a mouse deficient in ADAMTS1. Adamts1 mRNA was absent in the ADAMTS1 null mouse frontal cortex, but there was no change in the abundance or proteolytic processing of the prominent lecticans brevican and versican V2. However, there was a marked increase in the perinatal lectican neurocan in juvenile ADAMTS1 null female frontal cortex. More prominently, there were declines in synaptic protein levels in the ADAMTS1 null female, but not male, frontal cortex beginning at postnatal day 28. These synaptic marker declines did not affect learning or memory in the adult female ADAMTS1 null mice when tested with the radial-arm water maze. These results indicate that in vivo Adamts1 knockout leads to sexual dimorphism in frontal cortex synaptic protein levels. Since changes in lectican abundance and proteolytic processing did not accompany the synaptic protein declines, ADAMTS1 may play a nonproteolytic role in regulating neural plasticity.  相似文献   

19.
ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5–8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ‐line deletion produced from the floxed allele by Cre‐lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1‐Cre mice. Unlike other ADAMTS single knockouts, limb‐specific Adamts9 deletion resulted in soft‐tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non‐redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9. genesis 52:702–712, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号