首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats were injected subcutaneously for 2 weeks with increasing amounts of norepinephrine. The lipid composition of the heart muscle was examined for nearly 2 months. The treatment caused major changes in fatty acyl chain composition of myocardial phosphatidylethanolamine and phosphatidylcholine. In these phospholipids, linoleic acid was decreased to about half of the control value but docosahexaenoic acid increased about 50% in phosphatidylethanolamine and more than doubled in phosphatidylcholine. Arachidonic acid content rose about 50% in phosphatidylcholine but was lowered in phosphatidylethanolamine. The cardiolipin fraction retained its high amount of linoleic acid and the fatty acid composition of the triacylglycerol was not altered, although the amount was significantly decreased. These changes reverted to control levels in 4–8 days after the final injection, although rebound behaviour was observed. An inverse relationship between arachidonic acid content of phosphatidylcholine and phosphatidylethanolamine was observed.  相似文献   

2.
Cardiac phospholipids, notably cardiolipin, undergo acyl chain remodeling and/or loss of content in aging and cardiovascular diseases, which is postulated to mechanistically impair mitochondrial function. Less is known about how diet-induced obesity influences cardiac phospholipid acyl chain composition and thus mitochondrial responses. Here we first tested if a high fat diet remodeled murine cardiac mitochondrial phospholipid acyl chain composition and consequently disrupted membrane packing, supercomplex formation and respiratory enzyme activity. Mass spectrometry analyses revealed that mice consuming a high fat diet displayed 0.8–3.3 fold changes in cardiac acyl chain remodeling of cardiolipin, phosphatidylcholine, and phosphatidylethanolamine. Biophysical analysis of monolayers constructed from mitochondrial phospholipids of obese mice showed impairment in the packing properties of the membrane compared to lean mice. However, the high fat diet, relative to the lean controls, had no influence on cardiac mitochondrial supercomplex formation, respiratory enzyme activity, and even respiration. To determine if the effects were tissue specific, we subsequently conducted select studies with liver tissue. Compared to the control diet, the high fat diet remodeled liver mitochondrial phospholipid acyl chain composition by 0.6–5.3-fold with notable increases in n-6 and n-3 polyunsaturation. The remodeling in the liver was accompanied by diminished complex I to III respiratory enzyme activity by 3.5-fold. Finally, qRT-PCR analyses demonstrated an upregulation of liver mRNA levels of tafazzin, which contributes to cardiolipin remodeling. Altogether, these results demonstrate that diet-induced obesity remodels acyl chains in the mitochondrial phospholipidome and exerts tissue specific impairments of respiratory enzyme activity.  相似文献   

3.
Increasing hemodynamic load during early postnatal development leads to rapid growth of the left ventricular (LV) myocardium, which is associated with membrane phospholipid (PL) remodeling characterized by n-3 polyunsaturated fatty acids (PUFA) accumulation. The aim of this study was to examine the influence of additional workload imposed early after birth when ventricular myocytes are still able to proliferate. Male Wistar rats were subjected to abdominal aortic constriction (AC) at postnatal day 2. Concentrations of PL and their fatty acid (FA) profiles in the LV were analyzed in AC, sham-operated (SO) and intact animals on postnatal days 2 (intact only), 5 and 10. AC resulted in LV enlargement by 22 % and 67 % at days 5 and 10, respectively, compared with age-matched SO littermates. Concentrations of phosphatidylcholine, cardiolipin, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine and sphingomyelin decreased in AC myocardium, albeit with different time course and extent. The main effect of AC on FA remodeling consisted in the accumulation of n-3 PUFA in PL. The most striking effect of AC on FA composition was observed in phosphatidylinositol and cardiolipin. We conclude that excess workload imposed by AC inhibited the normal postnatal increase of PL concentration while further potentiating the accumulation of n-3 PUFA as an adaptive response of the developing myocardium to accelerated growth.  相似文献   

4.
Molecular species in the three major mitochondrial lipids cardiolipin, phosphatidylcholine and phosphatidylethanolamine were analysed in bovine heart and Saccharomyces cerevisiae. In both organisms cardiolipin contains mainly diacylglycerol moieties with two unsaturated chains and a significant higher proportion of C18-C18 species than phosphatidylcholine and phosphatidylethanolamine. To study whether the specific acyl composition of cardiolipin has a functional significance in lipid-protein interaction, experiments were made with the isolated ADP/ATP carrier of bovine heart mitochondria since this dimeric protein is known to be tightly associated with six molecules of cardiolipin [Beyer, K. and Klingenberg, M. (1985) Biochemistry 24, 3821-3826]. This association seems to be very strong as protein-bound cardiolipin does not exchange with soluble cardiolipin on a time scale of hours. Analysis of the species composition suggests that one carriers dimer is associated with four molecules of tetralinoleoyl cardiolipin and two molecules of trilinoleoyl-monolinolenoyl cardiolipin. Catalytic hydrogenation of the acyl chains of carrier-bound cardiolipin does not result in release of cardiolipin as judged by 31P-NMR spectroscopy. The ADP/ATP carrier was reconstituted with saturated phosphatidylcholines and spin-labelled cardiolipin whose double bonds were subsequently saturated by catalytic hydrogenation. ESR spectroscopy shows that saturation of spin-labelled cardiolipin has no significant impact on its association with the ADP/ATP carrier. However, precipitation of the detergent-solubilized ADP/ATP carrier can only be induced by addition of unsaturated but not by saturated cardiolipin. It is concluded that the specific acyl composition of cardiolipin is not a prerequisite of its high affinity for the ADP/ATP carrier, at least when the protein is reconstituted in a saturated phosphatidylcholine environment.  相似文献   

5.
A novel longitudinal feeding design was used to investigate the controlling influence of dietary fatty acids on the dynamic incorporation of fatty-acyl chains into phosphatidylcholine, phosphatidylethanolamine and cardiolipin in inner membrane of cardiac mitochondria. Rats were fed a polyunsaturated-fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated-fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil only throughout. Rats were killed serially. Regression analysis was used to represent longitudinal flux in membrane lipid fatty-acid composition occurring with change in dietary fat. The fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin was influenced by dietary oil in a reversible way. Maximal diet influence was achieved in the 11-day cross-over period. Soya-bean oil to rapeseed oil cross-over caused the fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin to resemble that of rats fed rapeseed oil only. These changes were reversed by crossing back to soya-bean oil, indicating the dynamic state and short half-life of membrane phospholipid fatty-acyl chains. This report demonstrates for the first time in the whole animal fed diets adequate in all nutrients that subcellular membrane lipids rapidly respond to change in dietary fatty-acid balance. The system may be used to assess in vivo the significance of dietary fat in determining membrane physicochemical properties and biochemical functions.  相似文献   

6.
The phospholipid composition and phospholipid fatty acid composition of purified Rickettsia prowazeki were determined. The lipid phosphorous content was 6.8 +/- 1.3 microgram/mg of total rickettsial protein. The major phospholipid was phosphatidylethanolamine (60 to 70%); phosphatidylglycerol constituted 20%, and phosphatidylcholine constituted 15%. Small amounts of phosphatidylserine and cardiolipin were detected. The principal fatty acids were 18:1, 16:1, and 16:0. The fatty acid composition of the phosphatidylcholine in the rickettsial extracts was very different than that of the other rickettsial phosphatides and very similar to that of normal yolk sac phosphatidylcholine. The specific of the phosphatidylcholine of rickettsiae grown in the presence of 32P was markedly lower than that of phosphatidylethanolamine and phosphatidylglycerol. It is suggested that the phosphatidylcholine in the rickettsial extract is yolk sac derived and either tightly absorbed or exchanged into the rickettsial membrane.  相似文献   

7.
Locally released endothelin (ET)-1 has been recently identified as an important mediator of cardiac hypertrophy. It is still unclear, however, which primary stimulus specifically activates ET-dependent signaling pathways. We therefore examined in adult rats (n = 51) the effects of a selective ET(A) receptor antagonist in experimental models of cardiac hypertrophy, in which myocardial growth is predominantly initiated by a single primary stimulus. Rats were exposed to mechanical overload (ascending aortic stenosis), increased levels of circulating ANG II (ANG II infusion combined with hydralazine), or adrenergic stimulation (infusion of norepinephrine in a subpressor dose) for 7 days. All experimental treatments significantly increased left ventricular weight/body weight ratios compared with untreated rats, whereas systolic left ventricular peak pressure was increased only after ascending aortic stenosis. ET(A) receptor blockade exclusively reduced norepinephrine-induced cardiac hypertrophy and atrial natriuretic peptide gene expression. Blood pressure levels and heart rates remained unaffected during ET(A) receptor blockade in all experimental groups. These data indicate that in rat left ventricle, the ET-dependent signaling pathway leading to early development of cardiac hypertrophy and fetal gene expression is primarily activated by norepinephrine.  相似文献   

8.
The mitochondrial phospholipid cardiolipin is required for optimal mitochondrial respiration. In this study, cardiolipin molecular species and cytochrome oxidase (COx) activity were studied in interfibrillar (IF) and subsarcolemmal (SSL) cardiac mitochondria from Spontaneously Hypertensive Heart Failure (SHHF) and Sprague-Dawley (SD) rats throughout their natural life span. Fisher Brown Norway (FBN) and young aortic-constricted SHHF rats were also studied to investigate cardiolipin alterations in aging versus pathology. Additionally, cardiolipin was analyzed in human hearts explanted from patients with dilated cardiomyopathy. A loss of tetralinoleoyl cardiolipin (L(4)CL), the predominant species in the healthy mammalian heart, occurred during the natural or accelerated development of heart failure in SHHF rats and humans. L(4)CL decreases correlated with reduced COx activity (no decrease in protein levels) in SHHF cardiac mitochondria, but with no change in citrate synthase (a matrix enzyme) activity. The fraction of cardiac cardiolipin containing L(4)CL became much lower with age in SHHF than in SD or FBN mitochondria. In summary, a progressive loss of cardiac L(4)CL, possibly attributable to decreased remodeling, occurs in response to chronic cardiac overload, but not aging alone, in both IF and SSL mitochondria. This may contribute to mitochondrial respiratory dysfunction during the pathogenesis of heart failure.  相似文献   

9.
Fifty-six male Wistar SPF rats were fed a diet containing low erucic acid rapeseed (LEAR) oil (15% by weight) as the only source of lipids for 18 wk. Lipid parameters (fatty acid composition and contents of lipid classes) and the occurrence and severity of focal lesions were both determined on the heart of each animal. Four groups were constituted according to the severity of cardiac lesions. Statistical analyses were applied to the data to find a relationship between the lipid parameters and the severity of heart lesions. None of the measured parameters (heart contents of neutral lipids, total phospholipids, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, sphingomyelin and fatty acid composition of each phospholipid class) appeared to be related with the grading of the lesions. Therefore, we failed to find a direct support for the assumption that heart lesions, induced by LEAR oil, are mediated by changes in the lipid and/or fatty acid composition of heart membranes. However, this hypothesis can not be discarded.  相似文献   

10.
Lipid composition of the myocardium and in vitro lipid metabolism were studied in hearts from young rats after 30 days of treatment with triiodothyronine (100 microgram/kg per day) and in heterotopically isotransplanted hearts of inbred adult rats 6 days after surgery. The former served as an experimental model of cardiac hyperfunction, while the latter, empty beating hearts, served as a model of cardiac hypofunction. In hearts from hyperthyroid animals the concentration of phosphatidylcholine, phosphatidylethanolamine, cardiolipin, and the incorporation of 14C-labelled palmitic and erucic acid into these phospholipids were increased significantly as compared with controls. In contrast, the triglyceride concentration and the incorporation of palmitate into triglyceride was significantly decreased. In transplanted hearts, the phospholipid concentration and the incorporation of 14C-labelled fatty acids into phospholipids were significantly decreased as compared with the hearts of the inbred host rats of the same age. The results indicate that the mechanical performance of the heart affects the phospholipid composition, which may be a reflection of increased or decreased proliferation of subcellular membranes in sustained cardiac hyper- or hypo-function.  相似文献   

11.
1. A study of the mitochondrial phospholipids, phospholipid fatty acid patterns and enzyme activities was investigated in brown tissue (B.A.T.) from rats chronically exposed to cold and/or treated with thyroxine. 2. The total activities of the oxidative enzymes were increased after cold exposure, but not after thyroxine treatment. 3. Cold exposure increased the amount of phosphatidylethanolamine, phosphatidylcholine, cardiolipin and lysophospholipids, the effect being greatest for phosphatidylethanolamine. At the same time, there were marked alterations in the fatty acid composition of the mitochondrial phospholipids (decrease of palmitic, palmitoleic and oleic acids ; increase of stearic, linoleic and arachidonic acids). 4. All these cold-induced alterations were reversed by re-adaptation of the animal to a normal temperature range. 5. The alterations of the fatty acid composition of phospholipids could be explained by changes in the rate of individual fatty acid biosynthesis.  相似文献   

12.
Male Sprague-Dawley rats were fed diets containing 20% (w/w) soya-bean oil, high-erucic acid rapeseed oil or low-erucic acid rapeseed oil for 0, 12 or 23 days. The type of fat present in the diet had no effect on the total phospholipid content of heart mitochondria (micrograms/mg of protein) but did influence the phospholipid class distribution. Rats fed high-erucic acid rapeseed oil for 12 or 23 days had significantly higher mitochondrial phosphatidylcholine content than rats fed soya-bean oil. Low-erucic acid rapeseed oil resulted in elevation of cardiac mitochondrial cardiolipin content after dietary treatment for 12 days. The results demonstrate in vivo that diet is a significant determinant of the phospholipid class content of subcellular membranes.  相似文献   

13.
Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.  相似文献   

14.
Bayer MH 《Plant physiology》1983,73(1):179-181
Phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and cardiolipin are the major phospholipids in young leaves of black oak (Quercus robor L.). Except for phosphatidylcholine, young, developing cynipid-galls on black oak leaves, i.e. the insect-transformed tissues, contain less phospholipid than normal leaf tissues. Lipid acyl hydrolase activity determined by the cleavage of free fatty acids from a labeled phospholipid substrate is higher in the tissue extracts from galls than from leaves. The increase in enzyme activity and the altered phospholipid composition are discussed in relation to expected membrane modifications and transport phenomena in insect-transformed tissues.  相似文献   

15.
Sprague-Dawley rats were fed one of three purified diets--10% corn oil, 10% hydrogenated coconut oil, or 10% linseed oil--through two generations. At 60-80 days of age the animals were sacrificed. The fatty acyl composition of phosphatidylcholine, phosphatidylethanolamine, plasmalogen phosphatidylethanolamine, and combined phosphatidylinositol/phosphatidylserine from cerebral cortex and isolated cerebral microvessels was determined. Brain slice prostaglandin F2 alpha or microvascular prostacyclin synthesis was also measured. Major changes were noted in the fatty acid profiles, most dramatically in the phosphatidylethanolamine and ethanolamine plasmalogen fractions, with an active rise in docosahexaenoic acid resulting from linseed oil feeding. A depression in prostaglandin F2 alpha synthesis was seen in brain slices of hydrogenated coconut oil- and linseed oil-fed rats. Such a depression was also observed in microvascular prostaglandin synthesis at basal and stimulated levels but not in control incubations. The potential importance of these findings to cerebral microcirculation and hemostasis is discussed.  相似文献   

16.
《Phytochemistry》1987,26(5):1311-1315
The incorporation of [14C]acetate into fatty acids in a plasma membrane enriched fraction from mature soybean root (Glycine max) was studied by time-course experiments. Mature sections of 4-day-old dark-grown soybean roots were incubated with [1-14C]acetate, 1 mM sodium acetate and 50 μ/ml chloramphenicol. Plasma membrane vesicles were isolated at pH 7.8 and in the presence of 5 mM EDTA, 5 mM EGTA and 10 mM NaF. Lipid extracts analysed for phospholipid class and acyl chain composition revealed that relatively long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction. Radioactivity was incorporated into all the phospholipid classes proportional to their concentration in the membrane fraction. The distribution of 14C within the fatty acids of phosphatidylcholine and phosphatidylethanolamine differed from the respective fatty acid compositions and changed with time. Radioactivity also appeared more rapidly in the unsaturated acyl groups of phosphatidylcholine when compared with phosphatidylethanolamine. The rate and pattern of fatty acid incorporation into phosphatidylcholine differed from that for phosphatidylethanolamine.  相似文献   

17.
The phospholipid composition and fatty acid patterns of individual phospholipid classes were determined in mitochondria from rabbit reticulocytes. Compared to mitochondria from rat liver reticulocyte, mitochondria exhibit about twice the amount of phospholipids. The phospholipid pattern of reticulocyte mitochondria (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin) is comparable with other mitochondrial species. Mitochondrial fractions from reticulocytes are characterized, however, by an additional content of sphingomyelin. This sphingomyelin differs in its fatty acid composition from the sphingomyelin of the plasma membrane. The fatty acid patterns of all other phospholipids essentially correspond to those of mitochondria from other sources and to those of plasma membranes as well.  相似文献   

18.
1. Lipid composition of Trypanosoma cruzi epimastigote form in culture consist of 35% of phospholipids and 65% of neutral lipids. 2. Among the phospholipids, phosphatidylcholine is the more abundant (44%), followed by phosphatidylethanolamine (28%), phosphatidylinositol (12%), sphingomyelin (4%), and smaller amounts of cardiolipin, phosphatidic acid, lysolecithin, phosphatidylserine (traces), and an unidentified phospholipid (3%). 3. Pulse labeling with 32P showed highest specific incorporation in phosphatidylethanolamine, followed by phosphatidylinositol and phosphatidylcholine, suggesting a more active role for phosphatidylethanolamine in these organisms.  相似文献   

19.
Mitochondrial phospholipids from goldfish lateral line muscle were analysed with respect to polar and apolar groups. Groups of 20 goldfish, acclimated to 5, 20 and 30°C, were used. Temperature-induced shifts of both polar and apolar groups of the mitochondrial phospholipids were observed. The fatty acid composition of mitochondrial phospholipids is characterized by a large amount of polyenoic acids, dominated by docosahexaenoic acid and by octadecadienoic acid. At the higher acclimation temperatures, a significant decrease in docosahexaenoic acid is found. However, the resultant effect of environmental temperature on the degree of unsaturation is small, in contrast to the marked effect on mean chain length. Pronounced changes in the molar ratio of phosphatidylcholine and phosphatidylethanolamine are seen; a decrease in mitochondrial phosphatidylcholine is observed at low acclimation temperature, which is compensated for by a nearly equal increase in phosphatidylethanolamine. The main phospholipids are, apparently, phosphatidylcholine, phosphatidylethanolamine and cardiolipin, comprising 90% of the total pool of 12 species. It is found that the anionic nature of the phospholipids is increased at low acclimation temperatures. We discuss this effect and its probable importance in the stabilization of the surface potential of the mitochondrial membranes.  相似文献   

20.
A tobacco-specific nitrosamine (TSNA), N-nitrosonornicotine (NNN), is a potent carcinogen present in cigarette smoke, and chronic exposure to it can lead to pulmonary cancer. NNN causes changes in phospholipid metabolism and the mechanism is yet to be elucidated. Exposure of Saccharomyces cerevisiae to 50 μM NNN leads to a substantial decrease in phosphatidylserine (PS) by 63%, phosphatidylcholine (PC) by 42% and phosphatidylethanolamine (PE) by 36% with a concomitant increase in lysophospholipids (LPL) by 25%. The alteration in phospholipid content was dependent on increasing NNN concentration. Reduced phospholipids were accompanied with increased neutral lipid content. Here we report for the first time that NNN exposure, significantly increases phospholipase B (PLB) activity and the preferred substrate is PC, a major phospholipid responsible for a series of metabolic functions. Furthermore, NNN also promotes the alteration of fatty acid (FA) composition; it increases the long chain fatty acid (C18 series) in phospholipids specifically phosphatidylethanolamine (PE) and PS; while on the contrary it increases short chain fatty acids in cardiolipin (CL). NNN mediated degradation of phospholipids is associated with enhanced PLB activity and alteration of phospholipid composition is accompanied with acyl chain remodelling. Understanding the altered phospholipid metabolism produced by NNN exposure is a worthwhile pursuit because it will help to understand the toxicity of tobacco smoke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号