首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chronic demyelinating disease results from murine infection with the neurotropic strain JHM of mouse hepatitis virus (MHV-JHM). Demyelination is largely immune mediated. In this study, the individual roles of CD4 and CD8 T cells in MHV-induced demyelination were investigated using recombination-activating gene 1-/- (RAG1-/-) mice infected with an attenuated strain of MHV-JHM. These animals develop demyelination only after adoptive transfer of splenocytes from mice previously immunized to MHV. In this study, we show that, following adoptive transfer, virus-specific CD4 and CD8 T cells rapidly infiltrate the CNS of MHV-JHM-infected RAG1-/- mice. Adoptive transfer of CD4 T cell-enriched donors resulted in more severe clinical disease accompanied by less demyelination than was detected in the recipients of undepleted cells. Macrophage infiltration into the gray matter of CD4 T cell-enriched recipients was greater than that observed in mice receiving undepleted splenocytes. In contrast, CD8 T cell-enriched recipients developed delayed disease with extensive demyelination of the spinal cord. MHV-JHM-infected RAG1-/- mice receiving donors depleted of both CD4 and CD8 T cells did not develop demyelination. These results demonstrate that the development of demyelination following MHV infection may be initiated by either CD4 or CD8 T cells. Furthermore, they show that CD4 T cells contribute more prominently than CD8 T cells to the severity of clinical disease, and that this correlates with increased macrophage infiltration into the gray matter.  相似文献   

2.
Mice infected with the murine coronavirus, mouse hepatitis virus, strain JHM (MHV) develop an immune-mediated demyelinating encephalomyelitis. We showed previously that adoptive transfer of MHV-immune splenocytes depleted of either CD4 or CD8 T cells to infected RAG1(-/-) recipients (mice deficient in recombination activation gene 1) resulted in demyelination. Herein we show that transfer of CD8 T cell-enriched splenocytes from MHV-immune IFN-gamma(-/-) donors resulted in a substantial decrease in demyelination (4.8% of the white matter of the spinal cord compared with 26.3% in those receiving cells from C57BL/6 donors). Similar numbers of lymphocytes were present in the CNS of recipients of either C57BL/6 or IFN-gamma(-/-) CD8 T cells, suggesting that IFN-gamma was not crucial for lymphocyte entry into the CNS. Rather, IFN-gamma was critical for optimal activation or migration of macrophages or microglia into the white matter in the context of CD8 T cell-mediated demyelination.  相似文献   

3.
Mice infected with mouse hepatitis virus (MHV) strain JHM develop primary demyelination. Herein we show that axonal damage occurred in areas of demyelination and also in adjacent areas devoid of myelin damage. Immunodeficient MHV-infected RAG1-/- mice (mice defective in recombinase activating gene 1 expression) do not develop demyelination unless they receive splenocytes from a mouse previously immunized against MHV (G. F. Wu, A. Dandekar, L. Pewe, and S. Perlman, J. Immunol. 165:2278-2286, 2000). In the present study, we show that adoptive transfer of T cells was also required for the majority of the axonal injury observed in these animals. Both demyelination and axonal damage were apparent by 7 days posttransfer. Recent data suggest that axonal injury is a major factor in the long-term disability observed in patients with multiple sclerosis. Our data demonstrate that immune system-mediated damage to axons is also a common feature in mice with MHV-induced demyelination. Remarkably, there appeared to be a minimal, if any, interval of time between the appearance of demyelination and that of axonal injury.  相似文献   

4.
Wu GF  Pewe L  Perlman S 《Journal of virology》2000,74(16):7683-7686
Demyelination induced by mouse hepatitis virus (MHV), strain JHM, is in large part immune mediated, but little is known about the mechanisms involved in this process. Previous results suggest that inducible nitric oxide synthase (NOS2) contributes transiently to MHV-induced demyelination. Herein, we show that equivalent amounts of demyelination were evident at day 12 after MHV infection in mice genetically deficient in NOS2 (NOS2(-/-)) and in C57BL/6 mice. Furthermore, using an established adoptive transfer model and pharmacological inhibitors of NOS2 function, we could demonstrate no effect on MHV-induced demyelination. These results indicate that NOS2 function is not required for demyelination in mice infected with MHV.  相似文献   

5.
In the present study, we evaluated the role of CCR2 in a model of viral-induced neurologic disease. An orchestrated expression of chemokines, including the CCR2 ligands monocyte chemoattractant protein-1/CCL2 and monocyte chemoattractant protein-3/CCL7, occurs within the CNS following infection with mouse hepatitis virus (MHV). Infection of mice lacking CCR2 (CCR2(-/-)) with MHV resulted in increased mortality and enhanced viral recovery from the brain that correlated with reduced (p < or = 0.04) T cell and macrophage/microglial (determined by F4/80 Ag expression, p < or = 0.004) infiltration into the CNS. Moreover, MHV-infected CCR2(-/-) mice displayed a significant decrease in Th1-associated factors IFN-gamma (p < or = 0.001) and RANTES/CCL5 (p < or = 0.002) within the CNS as compared with CCR2(+/+) mice. Further, peripheral CD4(+) and CD8(+) T cells from immunized CCR2(-/-) mice displayed a marked reduction in IFN-gamma production in response to viral Ag and did not migrate into the CNS of MHV-infected recombination-activating gene (RAG)1(-/-) mice following adoptive transfer. In addition, macrophage/microglial infiltration into the CNS of RAG1(-/-) mice receiving CCR2(-/-) splenocytes was reduced (p < or = 0.05), which correlated with a reduction in the severity of demyelination (p < or = 0.001) as compared with RAG1(-/-) mice receiving splenocytes from CCR2(+/+) mice. Collectively, these results indicate an important role for CCR2 in host defense and disease by regulating leukocyte activation and trafficking.  相似文献   

6.
Mouse hepatitis virus strain JHM (MHV-JHM) causes a chronic encephalomyelitis in susceptible mice, with histological evidence of demyelination in the spinal cord. After intranasal inoculation, virus spreads retrogradely to several brain structures along neuroanatomic projections to the main olfactory bulb. In the absence of experimental intervention, mice become moribund before the spinal cord is infected. In this study, infusions of anti-MHV neutralizing monoclonal antibodies were administered to protect mice from the MHV-JHM-induced acute encephalitis and to allow survival until virus spread to the spinal cord. Under these conditions, virus was observed to enter specific layers (primarily laminae V to VII) in the gray matter of the upper spinal cord, consistent with transneuronal spread. While the brain structures which are the sources for virus spread to the spinal cord cannot be determined with certainty, the ventral reticular nucleus is likely to be important since it is consistently and extensively labeled in all mice and receives projections from subsequently infected areas of the spinal cord. After initial entry into the gray matter, virus rapidly spread to the white matter of the spinal cord. During the early stages of this process, extensive infection of astrocytes was noted, suggesting that cell-to-cell spread via these glial cells is an important part of this process. Reports from other laboratories using cultured cells strongly suggested that astrocytes serve as important regulators of oligodendrocyte function and, by extrapolation, have a major role in vivo in the processes of both demyelination and remyelination. Thus, our results not only outline the probable pathway used by MHV-JHM to infect the white matter of the spinal cord but also, with the assumption that infection of astrocytes leads to subsequent dysfunction, raise the possibility that infection of these cells contributes to the demyelinating process.  相似文献   

7.
Some strains of mouse hepatitis virus (MHV) can induce chronic inflammatory demyelination in mice that mimics certain pathological features of multiple sclerosis. We have examined neural cell tropism of demyelinating and nondemyelinating strains of MHV in order to determine whether central nervous system (CNS) cell tropism plays a role in demyelination. Previous studies demonstrated that recombinant MHV strains, isogenic other than for the spike gene, differ in the extent of neurovirulence and the ability to induce demyelination. Here we demonstrate that these strains also differ in their abilities to infect a particular cell type(s) in the brain. Furthermore, there is a correlation between the differential localization of viral antigen in spinal cord gray matter and that in white matter during acute infection and the ability to induce demyelination later on. Viral antigen from demyelinating strains is detected initially in both gray and white matter, with subsequent localization to white matter of the spinal cord, whereas viral antigen localization of nondemyelinating strains is restricted mainly to gray matter. This observation suggests that the localization of viral antigen to white matter during the acute stage of infection is essential for the induction of chronic demyelination. Overall, these observations suggest that isogenic demyelinating and nondemyelinating strains of MHV, differing in the spike protein expressed, infect neurons and glial cells in different proportions and that differential tropism to a particular CNS cell type may play a significant role in mediating the onset and mechanisms of demyelination.  相似文献   

8.
Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). CD4(+) T cells are important in amplifying demyelination by attracting macrophages into the central nervous system (CNS) following viral infection; however, the mechanisms governing the entry of these cells into the CNS are poorly understood. The role of chemokine receptor CCR5 in trafficking of virus-specific CD4(+) T cells into the CNS of MHV-infected mice was investigated. CD4(+) T cells from immunized CCR5(+/+) and CCR5(-/-) mice were expanded in the presence of the immunodominant epitope present in the MHV transmembrane (M) protein encompassing amino acids 133 to 147 (M133-147). Adoptive transfer of CCR5(+/+)-derived CD4(+) T cells to MHV-infected RAG1(-/-) mice resulted in CD4(+)-T-cell entry into the CNS and clearance of virus from the brain. These mice also displayed robust demyelination correlating with macrophage accumulation within the CNS. Conversely, CD4(+) T cells from CCR5(-/-) mice displayed an impaired ability to traffic into the CNS of MHV-infected RAG1(-/-) recipients, which correlated with increased viral titers, diminished macrophage accumulation, and limited demyelination. Analysis of chemokine receptor mRNA expression by M133-147-expanded CCR5(-/-)-derived CD4(+) T cells revealed reduced expression of CCR1, CCR2, and CXCR3, indicating that CCR5 signaling is important in increased expression of these receptors, which aid in trafficking of CD4(+) T cells into the CNS. Collectively these results demonstrate that CCR5 signaling is important to migration of CD4(+) T cells to the CNS following MHV infection.  相似文献   

9.
The duration of mouse hepatitis virus (MHV) infection was examined in mice inoculated intranasally with selected strains of MHV. Following inoculation with virulent MHV-JHM, genetically susceptible BALB/c mice and resistant CD1 mice had detectable virus in the brain at 1 month, but not later intervals up to 12 months. BALB/c mice infected with avirulent MHV-S or MHV-1 had no detectable virus in brains at 1 month or thereafter. Immunosuppression of BALB/c mice with treatment regimens of hydrocortisone acetate or cyclophosphamide at 1 and 2 months after infection with MHV-JHM did not activate detectable virus in liver or increase the prevalence or degree of brain infection. Immunosuppression with these drugs during the acute phase of MHV-JHM infection influenced MHV infection, based on virus quantification in livers, but timing of drug treatment relative to MHV infection was critical. Mice infected with MHV developed IgG serum antibody titers that persisted without decline for up to 1 year after infection. Antibody titers varied with mouse genotype and infecting virus. These studies, using intranasal inoculation, support the conclusions of others, using other routes of inoculation, that MHV infection is not persistent in adult, immunocompetent mice.  相似文献   

10.
The chemokine CXCL10 is expressed within the CNS in response to intracerebral infection with mouse hepatitis virus (MHV). Blocking CXCL10 signaling results in increased mortality accompanied by reduced T cell infiltration and increased viral titers within the brain suggesting that CXCL10 functions in host defense by attracting T cells into the CNS. The present study was undertaken to extend our understanding of the functional role of CXCL10 in response to MHV infection given that CXCL10 signaling has been implicated in coordinating both effector T cell generation and trafficking. We show that MHV infection of CXCL10(+/+) or CXCL10(-/-) mice results in comparable levels of T cell activation and similar numbers of virus-specific CD4+ and CD8+ T cells. Subsequent analysis revealed no differences in T cell proliferation, IFN-gamma secretion by virus-specific T cells, or CD8+ T cell cytolytic activity. Analysis of chemokine receptor expression on CD4+ and CD8+ T cells obtained from MHV-immunized CXCL10(+/+) and CXCL10(-/-) mice revealed comparable levels of CXCR3 and CCR5, which are capable of responding to ligands CXCL10 and CCL5, respectively. Adoptive transfer of splenocytes acquired from MHV-immunized CXCL10(-/-) mice into MHV-infected RAG1(-/-) mice resulted in T cell infiltration into the CNS, reduced viral burden, and demyelination comparable to RAG1(-/-) recipients of immune CXCL10(+/+) splenocytes. Collectively, these data imply that CXCL10 functions primarily as a T cell chemoattractant and does not significantly influence T cell effector response following MHV infection.  相似文献   

11.
Pewe L  Haring J  Perlman S 《Journal of virology》2002,76(14):7329-7333
Mice infected with the murine coronavirus, mouse hepatitis virus, strain JHM (MHV) develop an immune-mediated demyelinating encephalomyelitis. Adoptive transfer of MHV-immune splenocytes depleted of either CD4 or CD8 T cells to infected mice deficient in recombination activation gene 1 resulted in demyelination. We showed previously that the process of CD8 T-cell-mediated demyelination was strongly dependent on the expression of gamma interferon (IFN-gamma) by donor cells. In this report, we show, in contrast, that demyelination and lymphocyte infiltration were increased in recipients of IFN-gamma(-/-) CD4 T cells when compared to levels in mice receiving C57BL/6 CD4 T cells.  相似文献   

12.
Kim TS  Perlman S 《Journal of virology》2005,79(11):7113-7120
Mouse hepatitis virus strain JHM causes a chronic demyelinating disease in susceptible strains of rodents. Demyelination does not develop in infected RAG1-/- (recombination activation gene-deficient) mice but can be induced by several experimental interventions, including adoptive transfer of virus-specific T cells or antibodies. A common feature of demyelination in these models is extensive infiltration of macrophages/microglia into the white matter. The data obtained thus far do not indicate whether macrophage/microglia infiltration, in the absence of T cells or antibody, is sufficient to mediate demyelination. To determine whether the expression of a single macrophage chemoattractant, in the context of virus infection, could initiate the demyelinating process, we engineered a recombinant coronavirus that expressed the chemokine CCL2/monocyte chemoattractant protein-1. CCL2 has been implicated in macrophage infiltration into the central nervous system and is involved in demyelination in many experimental models of demyelination. Extensive macrophage/microglia infiltration and demyelination has developed in RAG1-/- mice infected with this recombinant virus. Thus, these results suggest that the minimal requirement for demyelination is increased expression of a single macrophage-attracting chemokine in the context of an inflammatory milieu, such as that induced by a viral infection.  相似文献   

13.
To evaluate the role of cellular infiltrates in CNS demyelination in immunocompetent mice, we have used a model of multiple sclerosis (MS) in which different strains of mice are infected with a recombinant HSV-1 expressing IL-2. Histologic examination of the mice infected with HSV-IL-2 demonstrates that natural killer cells, dendritic cells, B cells, and CD25 (IL-2rα) do not play any role in the HSV-IL-2-induced demyelination. T cell depletion, T cell knockout and T cell adoptive transfer experiments suggest that both CD8(+) and CD4(+) T cells contribute to HSV-IL-2-induced CNS demyelination with CD8(+) T cells being the primary inducers. In the adoptive transfer studies, all of the transferred T cells irrespective of their CD25 status at the time of transfer were positive for expression of FoxP3 and depletion of FoxP3 blocked CNS demyelination by HSV-IL-2. The expression levels of IL-12p35 relative to IL-12p40 differed in BM-derived macrophages infected with HSV-IL-2 from those infected with wild-type HSV-1. HSV-IL-2-induced demyelination was blocked by injecting HSV-IL-2-infected mice with IL-12p70 DNA. This study demonstrates that suppression of the IL-12p70 function of macrophages by IL-2 causes T cells to become auto-aggressive. Interruption of this immunoregulatory axis results in demyelination of the optic nerve, the spinal cord and the brain by autoreactive T cells in the HSV-IL-2 mouse model of MS.  相似文献   

14.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus (TMEV) produces chronic demyelination and persistent infection in the central nervous system (CNS) of susceptible SJL mice. This series of experiments examined the contribution of humoral immunity and C to myelin destruction. As in multiple sclerosis, mice persistently infected with TMEV had elevated levels of IgG and oligoclonal bands in the cerebrospinal fluid (CSF). Immunoblot studies revealed that even in animals exhibiting profound demyelination, IgG in the serum and CSF was directed primarily at virus antigen rather than at normal myelin components. Inflammatory cells positive for Ig were distributed mainly around blood vessels, but occasionally they infiltrated the spinal cord parenchyma. Rare examples of myelin sheaths positive for IgG were found by immunoelectron microscopy in spinal cord sections from infected mice; the third component of complement (C3) was commonly found in the walls of CNS blood vessels but not on myelin. Neither serum nor CSF IgG from infected mice bound to myelin sheaths or other CNS components in sections of normal syngeneic spinal cord. There were significantly more demyelinating lesions in infected mice depleted of C components with cobra venom factor. These data do not support a humoral autoimmune basis for the CNS demyelination that occurs in association with persistent TMEV infection. However, the humoral immune response directed at TMEV antigens may either limit virus spread or promote virus persistence.  相似文献   

15.
Infection of susceptible strains of mice with Daniel's (DA) strains of Theiler's murine encephalomyelitis virus (DAV) results in virus persistence in the central nervous system (CNS) white matter and chronic demyelination similar to that observed in multiple sclerosis. We investigated whether persistence is due to the immune system more efficiently clearing DAV from gray than from white matter of the CNS. Severe combined immunodeficient (SCID) and immunocompetent C.B-17 mice were infected with DAV to determine the kinetics, temporal distribution, and tropism of the virus in CNS. In early disease (6 h to 7 days postinfection), DAV replicated with similar kinetics in the brains and spinal cords of SCID and immunocompetent mice and in gray and white matter. DAV RNA was localized within 48 h in CNS cells of all phenotypes, including neurons, oligodendrocytes, astrocytes, and macrophages/microglia. In late disease (13 to 17 days postinfection), SCID mice became moribund and permitted higher DAV replication in both gray and white matter. In contrast, immunocompetent mice cleared virus from the gray matter but showed replication in the white matter of their brains and spinal cords. Reconstitution of SCID mice with nonimmune splenocytes or anti-DAV antibodies after establishment of infection demonstrated that both cellular and humoral immune responses decreased virus from the gray matter; however, the cellular responses were more effective. SCID mice reconstituted with splenocytes depleted of CD4+ or CD8+ T lymphocytes cleared virus from the gray matter but allowed replication in the white matter. These studies demonstrate that both neurons and glia are infected early following DAV infection but that virus persistence in the white matter is due to preferential clearance of virus from the gray matter by the immune system.  相似文献   

16.
L Pewe  S Xue    S Perlman 《Journal of virology》1997,71(10):7640-7647
Under certain conditions, C57BL/6 mice persistently infected with mouse hepatitis virus strain JHM (MHV-JHM) develop clinical disease and histological evidence of demyelination several weeks after inoculation with virus. In a previous report, we showed that mutations in the RNA encoding an immunodominant CD8 T-cell epitope within the surface glycoprotein (epitope S-510-518) were present in all persistently infected animals and that these mutations abrogated recognition by virus-specific cytotoxic T cells (CTLs) in direct ex vivo cytotoxicity assays. To obtain further evidence that these mutations were necessary for the development of clinical disease, the temporal course of their appearance was determined. Mutations in the epitope were identified by 10 to 12 days after inoculation, and in some mice, virus containing mutated epitope was the dominant species detected by 15 days. In addition, most mice that remain asymptomatic at 80 days after inoculation, a time after which clinical disease almost never develops, were infected with only wild-type virus. Finally, analysis of virus isolated from mice with severe combined immunodeficiency (SCID) revealed the presence only of wild-type epitope S-510-518. These results, by showing that mutations are not selected in SCID mice and occur at early times after inoculation in C57BL/6 mice, support the view that they result from immune pressure and contribute to virus persistence and demyelination in mice infected persistently with MHV-JHM.  相似文献   

17.
The neurotropic JHM strain of mouse hepatitis virus (MHV) causes acute encephalitis and chronic demyelinating encephalomyelitis in rodents. Previous results indicated that CD8 T cells infiltrating the central nervous system (CNS) were largely antigen specific in both diseases. Herein we show that by 7 days postinoculation, nearly 30% of the CD4 T cells in the acutely infected CNS were MHV specific by using intracellular gamma interferon (IFN-gamma) staining assays. In mice with chronic demyelination, 10 to 15% of the CD4 T cells secreted IFN-gamma in response to MHV-specific peptides. Thus, these results show that infection of the CNS is characterized by a large influx of CD4 T cells specific for MHV and that these cells remain functional, as measured by cytokine secretion, in mice with chronic demyelination.  相似文献   

18.
CD8+ T cells are important for clearance of neurotropic mouse hepatitis virus (MHV) strain A59, although their possible role in A59-induced demyelination is not well understood. We developed an adoptive-transfer model to more clearly elucidate the role of virus-specific CD8+ T cells during the acute and chronic phases of infection with A59 that is described as follows. C57BL/6 mice were infected with a recombinant A59 virus expressing the gp33 epitope, an H-2Db-restricted CD8+ T-cell epitope encoded in the glycoprotein of lymphocytic choriomeningitis virus, as a fusion with the enhanced green fluorescent protein (RA59-gfp/gp33). P14 splenocytes (transgenic for a T-cell receptor specific for the gp33 epitope) were transferred at different times pre- and postinfection (p.i.). Adoptive transfer of P14 splenocytes 1 day prior to infection with RA59-gfp/gp33, but not control virus lacking the gp33 epitope, RA59-gfp, reduced weight loss and viral replication and spread in the brain and to the spinal cord. Furthermore, demyelination was significantly reduced compared to that in nonrecipients. However, when P14 cells were transferred on day 3 or 5 p.i., no difference in acute or chronic disease was observed compared to that in nonrecipients. Protection in mice receiving P14 splenocytes prior to infection correlated with a robust gp33-specific immune response that was not observed in mice receiving the later transfers. Thus, an early robust CD8+ T-cell response was necessary to reduce virus replication and spread, specifically to the spinal cord, which protected against demyelination in the chronic phase of the disease.  相似文献   

19.
Mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating disease with symptoms of hindlimb paralysis. Histological examination of the brains and spinal cords of these animals reveals the presence of large numbers of activated macrophages/microglia. In two other experimental models of demyelination, experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus-induced demyelination, depletion of hematogenous macrophages abrogates the demyelinating process. In both of these diseases, early events in the demyelinating process are inhibited by macrophage depletion. From these studies, it was not possible to determine whether infiltrating macrophages were required for late steps in the process, such as myelin removal. In this study, we show that when macrophages are depleted with either unmodified or mannosylated liposomes encapsulating dichloromethylene diphosphate, the amount of demyelination detected in MHV-infected mice is not affected. At a time when these cells were completely depleted from the liver, approximately equivalent numbers of macrophages were present in the spinal cords of control and drug-treated animals. These results suggest that blood-borne macrophages are not required for MHV-induced demyelination and also suggest that other cells, such as perivascular macrophages or microglia, perform the function of these cells in the presence of drug.  相似文献   

20.
TGF-beta 2 is a potent immunoregulatory mediator that influences B cell, T cell, and macrophage function. To test whether this cytokine alters pathology in a model of virus-induced demyelinating disease, we treated SJL/J mice with TGF-beta 2 either before or after infection with Theiler's murine encephalomyelitis virus. Treatment continued three times weekly through day 35 postinfection. TGF-beta 2 administration resulted in significantly smaller lesions and fewer virus Ag-positive cells in the spinal cords of infected SJL/J mice. Mice treated with TGF-beta 2 had similar levels of virus-specific IgG as infected, control-treated mice. TGF-beta 2 administration significantly increased the level of non-virus-specific activated CTLs, but had no effect on virus-specific CTLs. TUNEL revealed a decrease in the number of apoptotic nuclei in the spinal cord white matter of mice treated in vivo with TGF-beta 2. Immunostaining with an Ab to F4/80 revealed that TGF-beta 2-treated mice had significantly fewer F4/80-positive cells in the white matter of the spinal cord as compared with infected control-treated mice. These data suggest that TGF-beta 2 may control virus-induced demyelination via an immunomodulatory mechanism that reduces macrophage infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号