首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
G P Kraan  N M Drayer 《Steroids》1990,55(4):159-164
A urinary method of determining the cortisol production rate (CPR) in children was studied under physiologic conditions by administration of low amounts of [1,2,3,4-13C]cortisol. The CPR in three patients with multiple pituitary deficiency ranged from 7 to 16 mumoles d-1 m-2, and the CPR in three patients with congenital adrenal hyperplasia (CAH) due to 11 beta-hydroxylase deficiency (11 beta OHD) and 17 alpha-hydroxylase deficiency (17 alpha OHD) from 0.1 to 2.11 mumoles d-1 m-2. Results showed that with this method, very low CPRs can be reliably measured. The metabolism of [13C4]cortisol or [9,12,12-2H]cortisol was compared with that of native cortisol in adrenalectomized piglets. For the urinary cortisol metabolites, small to substantial differences in isotope dilution were noted relative to that in the original cortisol mixture. With [13C4]cortisol, the so-called secondary isotope effects were approximately 2% to 3% for tetrahydrocortisone (THE) and tetrahydrocortisol (THF), and about 10% for the cortolones, relative to the cortisol mixture. When [2H3]cortisol was used, the cortisol metabolites THE and THF contained only two deuterium atoms. Together with this apparent loss of one deuterium atom, the secondary isotope effects in these steroids amounted to 5% to 10%. It was concluded that [13C4]cortisol was the better tracer to use for the measurement of urinary CPR.  相似文献   

2.
This study describes a new approach using stable isotope methodology in evaluating 11beta-HSD activities in vivo based on urinary excretion of cortisol, cortisone, and their A-ring reduced metabolites. The method involved the measurement of deuterium-labeled cortisol and its deuterium-labeled metabolites by GC/MS simultaneously with endogenous cortisol, cortisone, and their A-ring reduced metabolites after oral administration of deuterium-labeled cortisol to normal human subjects. This stable isotope approach offered unique advantages in assessing the appropriateness of measuring unconjugated and total (unconjugated + conjugated) cortisol, cortisone, and their A-ring reduced metabolites in urine as indices of renal 11beta-HSD2 activity in man. Our results strongly support that the measurement of urinary unconjugated cortisol and cortisone is a significant advance in assessing 11beta-HSD2 activity.  相似文献   

3.
We reviewed the pathophysiology of our previously reported female patient who had glucocorticoid-responsive hyperaldosteronism and was treated successfully with daily dose of dexamethasone (Dex) for 21 years. In this present study, the possibility that the patient may have 17 alpha-hydroxylase deficiency (17-OH-D) mainly in the adrenal could not be ruled out. We therefore reviewed 31 Japanese patients diagnosed as having 17-OH-D with suppressed plasma renin activity reported in Japan. Among these patients, 9 were found to have a high plasma aldosterone (Ald) concentration (PAC) (group I). Twenty-one patients had either normal or low-normal PAC and the remaining patient had low urine Ald (group II). The slight cross-reactivity of the anti-Ald-antibodies used with 17-deoxy-steroids such as progesterone, 11-deoxycorticosterone and corticosterone which were increased in both groups did not explain the increased PAC in group I. In the patients in group I and group II with high-normal basal PAC, PAC further increased after ACTH and was suppressed by Dex. PAC in 2 group I patients, however, did not respond to angiotensin-II or angiotensin-III infusion. PAC in patients in group II with low or low-normal basal PAC responded equivocally to ACTH and Dex. The basal plasma cortisol in group I was lower than in group II, and plasma cortisol level after ACTH in group I appeared to remain at a lower level than that in group II patients. Among the study subjects, 28 showed a negative correlation between basal PAC and plasma cortisol. A possible discrepancy in the deficiency of 17 alpha-hydroxylase activity in adrenal and gonadal glands was also suggested in three 17-OH-D patients. The pathophysiology of Ald secretion and discrepancy in the deficiency of the enzyme activities in both glands in 17-OH-D patients was discussed.  相似文献   

4.
Data are presented on the urinary corticosteroid metabolic profile of the mouse strain 129/svJ. Through the use of GC/MS we have characterized, or tentatively identified corticosterone (Kendall's compound B) metabolites of both the 11beta-hydroxy and 11-carbonyl (compound A) series in urine. Full mass spectra of the methyloxime-trimethylether derivatives of 15 metabolites are included in the paper as an aid to other researchers in the field. Metabolites ranged in polarity from tetrahydrocorticosterone (THB) to dihydroxy-corticosterone with dominance of highly polar steroids. We found that prior to excretion corticosterone can undergo oxidation at position 11beta, reduction at position 20 and A-ring reduction. Metabolites retaining the 3-oxo-4-ene structure can be hydroxylated at position 6beta- as well as at an unidentified position, probably 16alpha-. Saturated steroids can be hydroxylated at positions 1beta-, 6alpha-, 15alpha- and 16alpha. A pair of hydroxy-20-dihydro-corticosterone metabolites (OH-DHB) were the most important excretory products accounting for about 40% of the total. One metabolite of this type was identified as 6beta-hydroxy-DHB; the other, of similar quantitative importance was probably 16alpha-hydroxy-DHB. The ratio of metabolites of corticosterone (B) to those of 11-dehydro-corticosterone (A) was greater than 9:1, considerably higher than that for the equivalent "human" ratio of 1:1 for cortisol to cortisone metabolites. Results from this study allowed the evaluation of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) activity in mice with deleted glucose-6-phosphate transporter (G6PT). These mice had attenuated back-conversion of A to B resulting in an increased ratio of A-metabolites to B-metabolites [Walker EA, Ahmed A, Lavery GG, Tomlinson JW, Kim SY, Cooper MS, Stewart PM, 11beta-Hydroxysteroid dehydrogenase type 1 regulation by intracellular glucose-6-phosphate, provides evidence for a novel link between glucose metabolism and HPA axis function. J Biol Chem 2007;282:27030-6]. We believe this study is currently the most comprehensive on the urinary steroid metabolic profile of the mouse. Quantitatively less steroid is excreted in urine than in feces by this species but urine analysis is more straightforward and the hepatic metabolites are less subject to microbial degradation than if feces was analyzed.  相似文献   

5.
The question addressed in this study was the nature of the enzyme required to remove the side-chain of 17-hydroxycorticosteroids, leading in the case of cortisol to the excretion of 11β-hydroxyandrosterone, 11-oxo-androsterone and the corresponding etiocholanolones. We questioned whether it could be CYP17, the 17-hydroxylase/17,20-lyase utilized in androgen synthesis. The conversion of exogenous cortisol to C19 steroids in patients with complete 17-hydroxylase deficiency (17HD) was studied rationalizing that if CYP17 was involved no C19 steroids would be formed. The urinary excretion of the four 11-oxy-C19 steroids as well as many of the major C21 cortisol metabolites were measured by GC/MS. Our results showed that the conversion of cortisol to C19 steroids was normal in 17HD indicating that a currently unidentified enzyme must be responsible for this transformation.

A secondary goal was to determine to what extent 11-oxy-C19 steroids were metabolites of cortisol or adrenal synthesized 11β-hydroxyandrostenedione. Since cortisol-treated 17HD patients cannot produce androstenedione, all C19 11-oxy-metabolites excreted must be derived from exogenous cortisol. The extent to which 17HD patients have lower relative excretion of C19 steroids should reflect the absence of 11β-hydroxyandrostenedione metabolites. Our results showed almost all of 11-oxo-etiocholanolone and 11β-hydroxyetiocholanolone were cortisol metabolites, but in contrast the excretion of 11β-hydroxyandrosterone was less than 10% that of normal individuals, indicating that in excess of 90% must be a metabolite of 11β-hydroxyandrostenedione.  相似文献   


6.
Slices of an adreno-cortical adenoma which had been obtained at operation from an 11-year-old girl with clinical signs of virilism were incubated with each of the following steroids: [1,2-3H]progesterone, [4-14C]pregnenolone, [1,2-3H]testosterone, [4-14C]androstenedione and [7-3H]dehydroepiandrosterone, respectively. Isolation and identification of the free radioactive metabolites were achieved by gel column chromatography on Sephadex LH-20, thin-layer chromatography, radio gas chromatography and isotope dilution. After incubation of progesterone, the following metabolites were identified: 11beta-hydroxyprogesterone, 16alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, 21-deoxycortisol, corticosterone and cortisol. Pregnenolone was metabolized to 17alpha-hydroxypregnenolone, progesterone, dehydroepiandrosterone, androstenedione and 11beta-hydroxyandrostenedione. When testosterone was used as substrate, 11beta-hydroxytestosterone, androstenedione and 11beta-hydroxyandrostenedione were found as metabolites, whereas androstenedione was metabolized to testosterone and 11beta-hydroxyandrostenedione. After incubation of dehydroepiandrosterone, only androstenedione and 11beta-hydroxyandrostenedione were isolated and identified. From these results, it appears that cortisol was formed in the adenoma tissue via 21-deoxycortisol and corticosterone. Delta4-3oxo steroids of the C19-series arose exclusively from pregnenolone via 17alpha-hydroxypregnenolone and dehydroepiandrosterone, and not from progesterone and 17alpha-hydroxyprogesterone. Calculated on the amounts of metabolites formed, the highest enzyme activities were those of the 11beta-hydroxylase and the 17alpha-hydroxylase. It is interesting to note that only traces of testosterone were detected after incubation of androstenedione, whereas testosterone yielded large amounts of androstenedione.  相似文献   

7.
Shi L  Wudy SA  Maser-Gluth C  Hartmann MF  Remer T 《Steroids》2011,76(1-2):140-144
Urine volume should be considered as a confounder when using urinary free cortisol (UFF) and cortisone (UFE) to assess glucocorticoid (GC) status. We aimed to examine whether adrenal androgen (AA) metabolites may be also affected by urine volume in healthy children. To compare the flow dependence of GC and AA metabolites, specific GC metabolites were examined. In 24-h urine samples of 120 (60 boys) healthy children (4-10 yr), steroid profiles were determined by GC-MS analysis, UFF and UFE by radioimmunoassay. To assess daily AA and GC secretion rates, 7 quantitatively most important AA (∑C19) and GC (∑C21) metabolites were summed. Sum of DHEA and its 16α-hydroxylated metabolites were denoted as DHEA&M. Association of urine volume with AA (∑C19, DHEA&M, DHEA, 16α-hydroxy-DHEA, 3β,16α,17β-androstenetriol) and GC (∑C21, UFF, UFE, 6β-hydroxycortisol, 20α-dihydrocortisol) were examined in linear regression models. Among the examined AA metabolites, 16α-hydroxy-DHEA (β=0.56, p<0.0001) and DHEA (β=0.43, p=0.05) showed relatively strong association with urine volume. A trend was seen for ∑C19 (β=0.23, p=0.08), but not for DHEA&M (p>0.1). Regarding GC metabolites, urine volume showed a stronger association with cortisol's direct metabolites, i.e., cortisone, 6β-hydroxycortisol and 20α-dihydrocortisol (β=0.4-0.6, p<0.01) than with cortisol itself (β=0.28, p<0.05). ∑C21 was not associated with urine volume. In conclusion, like UFF and UFE, renal excretion of DHEA, 16α-hydroxy-DHEA, 6β-hydroxycortisol, and 20α-dihydrocortisol may also depend on urine volume. The intrarenal production of the latter three and cortisone might explain their relative strong water-flow-dependency. Total AA or GC secretion marker appears not to be relevantly confounded by urine volume.  相似文献   

8.
A method is reported for the measurement of the urine excretion rates of tetrahydro-11-deoxycorticosterone (3 alpha,5 beta-THDOC), an important metabolite of 11-deoxycorticosterone (DOC). Quantification using gas chromatography/mass spectrometry (GC/MS) was achieved by comparing the ion fragment response for the molecular ion (m/z 507) of the analyte (as methyloxime trimethylsilyl ether derivative) to that of a fixed amount of an isomer of THDOC added to urine as internal standard. To improve the specificity of measuring THDOC in clinical samples, an additional Sephadex LH-20 chromatography step was introduced to separate 11-deoxycortisol and some progesterone metabolites. In the luteal phase of the menstrual cycle, THDOC excretion was higher than in the follicular phase; it was also higher than in women taking oral contraceptives. The correlation of THDOC with progesterone production, independent of a constant cortisol output, supports an ovarian or peripheral conversion of progesterone to DOC. The assay proved useful (1) in monitoring for the recurrence of a mineralocorticoid-secreting tumor and (2) when adrenal production of DOC was not fully suppressed in congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Under the latter circumstances, the renin-angiotensin system seemed to be an important regulator of DOC production.  相似文献   

9.

Background

High urine volume enhances urinary free cortisol (UFF) and cortisone (UFE) excretion rates in normal-weight adults and children. Renal excretion rates of glucocorticoids (GC) and their metabolites are frequently altered in obesity. The aim of the present study was to investigate whether UFF and UFE excretion is also affected by urine volume in severely obese subjects.

Experimental

In 24-h urine samples of 59 extremely obese subjects (mean BMI 45.3 ± 8.9 kg/m2) and 20 healthy lean subjects (BMI 22.1 ± 1.8 kg/m2), UFF and UFE, tetrahydrocortisol (THF), 5α-tetrahydrocortisol (5α-THF), and tetrahydrocortisone (THE) were quantified by RIA. The sum of THF, 5α-THF, and THE (GC3), the three major GC metabolites, reflects daily cortisol secretion. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity was assessed by the ratio UFE/UFF. Daily GC excretion rates were corrected for urine creatinine and adjusted for gender and body weight.

Results

In extremely obese subjects, urine volume was significantly associated with creatinine-corrected UFE and 11β-HSD2 activity after adjustment for gender and BMI (r = 0.47, p = 0.0002 and r = 0.31, p = 0.02, respectively). However, urine volume was not associated with creatinine-corrected UFF and GC3 (p = 0.4 and p = 0.6, respectively). In lean controls, urine volume was significantly associated with creatinine-corrected UFE and UFF (r = 0.58, p = 0.01 and r = 0.55, p = 0.02, respectively), whereas urine volume was not associated with 11β-HSD2 activity after appropriate adjustment (p = 0.3).

Conclusions

In severe obesity, in contrast to normal weight, renal excretion of UFE, but not of UFF is affected by fluid intake. This discrepancy may be due to the increased renal 11β-HSD2 activity in obesity.  相似文献   

10.
L Kornel  S Miyabo 《Steroids》1975,25(6):697-706
Following i.v. administration of [4-14C]cortisol, various sulfate conjugated metabolites of cortisol in urine were identified and their respective excretion rates measured. The results obtained demonstrated the following: 1) sulfate conjugates as a group are excreted considerably slower than glucuronide conjugates; 2) sulfate conjugates of steroids with non-reduced ring-A (C-21 sulfates) are excreted (and presumably formed) much faster than steroid-3-sulfates, which require reduction of the ring-A prior to the conjugation; 3) the excretion of C-3 sulfates of ring-A reduced steroids with glycerol side-chain (cortols and cortolones) is significantly faster than those of the corresponding steroids with dihydroxyacetone side-chain (THF, THE and their 5alpha-isomers); 4) the relative concentrations of C-21 sulfates of steroids with ring-A intact (FK, EK, ER, epiER and 6beta-hydroxycortisol) are much higher than the concentrations of C-21 glucuronides of these steroids.  相似文献   

11.
Resting cortisol and corticosterone levels in immobilized mature rusa stags (Cervus rusa timorensis) and the influence of synthetic ACTH on the cortisol/corticosterone ratio (F/B ratio) were investigated. The basal concentration of cortisol was found to be 14.07 nmol/l (SD = 9.3, N = 15) and corticosterone was 3.79 nmol/l (SD = 2.3, N = 15). The cortisol/corticosterone ratio for the basal level was 5.31 (SD = 3.9, N = 15). After ACTH administration the cortisol/corticosterone ratio increased to 11.41 (SD = 5.4, N = 147) regardless of doses of ACTH administered to individual stags. The adrenal response to ACTH administration has a potential application for selection of deer most suitable for deer farming.  相似文献   

12.
The syndrome of 17α-hydroxylase deficiency is due to the inability to synthesize cortisol and is associated with enhanced secretion of both corticosterone and 11-deoxy-corticosterone (DOC). In humans, corticosterone and its 5α-Ring A-reduced metabolites are excreted via the bile into the intestine and transformed by anaerobic bacteria to 21-dehydroxylated products: 11β-OH-progesterone or 11β-OH-(allo)-5α-preganolones (potent inhibitors of 11β-HSD2 and 11β-HSD1 dehydrogenase). Neomycin blocks the formation of these steroid metabolites and can blunt the hypertension in rats induced by either ACTH or corticosterone. 3α,5α-Tetrahydro-corticosterone, 11β-hydroxy-progesterone, and 3α,5α-tetrahydro-11β-hydroxy-progesterone strongly inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity; all these compounds are hypertensinogenic when infused in adrenally intact rats.Urine obtained from a patient with 17α-hydroxylase deficiency demonstrated markedly elevated levels of endogenous glycyrrhetinic acid-like factors (GALFs) that inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase activity (>300 times greater, and >400 times greater, respectively, than those in normotensive controls). Thus, in addition to DOC, corticosterone and its 5α-pathway products as well as the 11-oxygenated progesterone derivatives may play a previously unrecognized role in the increased Na+ retention and BP associated with patients with 17α-hydroxylase deficiency.  相似文献   

13.
C. Gómez  O.J. Pozo  L. Garrostas  J. Segura  R. Ventura 《Steroids》2013,78(12-13):1245-1253
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC–MS) and liquid chromatography tandem mass spectrometry (LC–MS/MS) after hydrolysis with β-glucuronidase and liquid–liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC–MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC–MS/MS and LC–MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).  相似文献   

14.
G Hansson 《Prostaglandins》1979,18(5):745-771
The metabolism of the prostaglandin F2 alpha analogues, 15-methyl-delta 4-cis-PGF1 alpha and 16,16-dimethyl-delta 4-cis-PGF1 alpha, has been investigated in the cynomologus monkey and the human female. The two analogues, tritium labelled in the 9 beta-position, were administered by intramuscular injections into the monkeys and by subcutaneous injections into the human. Excretion of tritium labelled products were followed in urine (in both species) and feces (in monkeys only) and several metabolites were identified by GC/MS. The analogues were found to be resistant to the 15-hydroxy dehydrogenase and furthermore the degradation by beta-oxidation was delayed. About 13% of the given dose of 15-methyl-delta 4-cis-PGF1 alpha was excreted unchanged into urine and feces from the monkey. The corresponding figure for 16,16-dimethyl-delta 4-cis-PGF1 alpha was about 20%. In addition, a large part of the metabolites had the carbon skeleton intact and were only metabolized by omega-oxidation. The relative resistance to degradation of these two analogues is likely to be the basis for their prolonged pharmacological activity.  相似文献   

15.
BACKGROUND AND METHODS: Quantitative enzyme-immunoassays of urinary and fecal immunoglobulin A (IgA), cortisol and 11-17-dioxoandrostanes (11,17-DOA), and serum cortisol in eight metabolic-cage-housed female cynomolgus monkeys were performed. The monkeys were divided into two groups, B and NB. Group B animals were blood sampled every 6 hours, whereas Group NB animals were not handled/blood sampled. RESULTS: No differences were recorded between the amounts of feces and urine excreted by the two groups. Group B animals excreted more urinary cortisol than did Group NB animals indicating that restraint-blood sampling resulted in a stress response. Excreted amounts of IgA and 11,17-DOA (urine and feces) did not differ between the groups. CONCLUSIONS: Urinary cortisol was a reliable marker of the stress associated with repeated blood sampling. Declining amounts of excreted urinary cortisol indicated that cynomolgus monkeys acclimated quickly to repeated blood sampling in metabolism cages. Within and between animal variation in amounts of feces voided demonstrated the importance of expressing fecal markers as 'amounts excreted per time unit per kg body weight' rather than just measuring the concentrations in fecal samples.  相似文献   

16.
Urinary metabolites of stanozolol (17 alpha-methyl-17 beta-hydroxy-5 alpha-androst-2-eno(3,2-c)-pyrazole) following oral administration were isolated by chromatography on XAD-2 and by preparative high-performance liquid chromatography (HPLC) and identified by gas chromatography-mass spectrometry (GC/MS) with electron impact (EI)-ionisation. Stanozolol is excreted as a conjugate but is metabolized to a large extent. All identified metabolites are hydroxylated, namely at C-3' of the pyrazole ring and at C-4 beta, C-16 alpha and C-16 beta of the steroid. Less than 5% of the metabolites are found in the unconjugated urine fraction: 3'-hydroxy-stanozolol (II) and 3'-hydroxy-17-epistanozolol (III). Conjugated excreted metabolites are 3'-hydroxystanozolol (II), stanozolol (I), 4 beta-hydroxy-stanozolol (IV), 16 beta-hydroxystanozolol (V), 16 alpha-hydroxystanozolol (VI), two isomers of 3',16-dihydroxystanozolol (VII, VIII), two isomers of 4 beta, 16-dihydroxystanozolol (IX, X) and a 3',?-dihydroxystanozolol (XI). 3'-Hydroxystanozolol, 4 alpha-hydroxystanozolol, 4 beta-hydroxystanozolol, 16 alpha-hydroxy-, 16 alpha-hydroxy-17-epi- and 16 beta-hydroxystanozolol were synthesised to confirm the structural assignment of the main metabolites.  相似文献   

17.
The presence of 17 alpha-hydroxylase in rodent adrenals is debated. The presence in blood of mice of 11-deoxycortisol together with the absence of cortisol is well known. We demonstrated here the in vitro synthesis of 17 alpha-hydroxyprogesterone and cortisol from [3H]progesterone in rat and mouse adrenals. We have shown that these syntheses represented 45 and 28% of those of 11-deoxycorticosterone and corticosterone, respectively, from progesterone. These data clearly suggest the presence of a 17 alpha-hydroxylase activity in vitro in these rodents adrenals. In addition, a noticeable synthesis of cortisol (0.87-1.57% per mg tissue, i.e. 52-64% per incubation flask) from 11-deoxycortisol was also observed and was inhibited by 0.1-0.3 mumol of Metyrapone and SKF 12185. These results allow to underline that the adrenals of rat and mouse, two species commonly used in laboratory experiments, may be used for in vitro investigations on cortisol metabolism from exogenous radioactive precursors.  相似文献   

18.
To develop non-invasive techniques for monitoring steroid stress hormones in the feces of free-living animals, extensive knowledge of their metabolism and excretion is essential. Here, we conducted four studies to validate the use of an enzyme immunoassay for monitoring fecal cortisol metabolites in snowshoe hares (Lepus americanus). First, we injected 11 hares with radioactive cortisol and collected all voided urine and feces for 4 days. Radioactive metabolites were recovered predominantly in the urine (59%), with only 8% recovered in the feces. Peak radioactivity was detected an average of 3.5 and 5.7 h after injection in the urine and feces, respectively. Second, we investigated diurnal rhythms in fecal cortisol metabolites by measuring recovered radioactivity 2 days after the radioactive cortisol injection. The total amount of radioactivity recovered showed a strong diurnal rhythm, but the amount of radioactivity excreted per gram of feces did not, remaining constant. Third, we injected hares with dexamethasone to suppress fecal cortisol metabolites and 2 days later with adrenocorticotropic hormone to increase fecal cortisol metabolites. Dexamethasone decreased fecal cortisol metabolites concentrations by 61% and adrenocorticotropic hormone increased them by 1,000%, 8–12 h after injection. Fourth, we exposed hares to a simulated predator (dog). This increased the fecal cortisol metabolites concentrations by 175% compared with baseline concentrations 8–12 h after exposure. Thus, this enzyme immunoassay provides a robust foundation for non-invasive field studies of stress in hares.  相似文献   

19.
This study describes a high-performance liquid chromatographic (HPLC) method for the simultaneous determination of 6beta-hydroxycortisol (6beta-OHF) and cortisol in human urine using either methylprednisolone or beclomethasone as internal standard. Separation was achieved on a reversed-phase phenyl column by a gradient elution of 0.05 M KH(2)PO(4)-0.01 M CH(3)COOH (pH 3.77) and 0.05 M KH(2)PO(4)-0.01 M CH(3)COOH with acetonitrile (4:6, v/v). 6beta-Hydroxycortisol and cortisol were monitored by UV absorption at 239 nm. The lower quantitation limits of the present HPLC method were 21.5 ng/ml for 6beta-OHF and 5.0 ng/ml for cortisol in urine. The within-day reproducibilities in the amounts of 6beta-OHF and cortisol determined were in good agreement with the actual amounts added, the relative error being less than 1.59%. The inter-assay precisions (R.S.D. values) were less than 7.91% for 6beta-OHF and cortisol. The method was compared with the GC/MS method by measuring 6beta-OHF in the same urine samples. A good correlation was found between the amounts determined by the two methods. The regression equations for the HPLC (y) and GC/MS (x) methods were: y=1.0701x+17.389 (r=0.9772) for methylprednisolone as internal standard and y=1.0827x+6.1364 (r=0.9794) for beclomethasone as internal standard.  相似文献   

20.
Stress enhances the production of corticosteroids by the adrenal cortex, resulting in the increased excretion of their metabolites in urine and faeces. An intraperitoneal injection of radioactive corticosterone was applied to adult, male Sprague-Dawley rats to monitor the route and delay of excreted metabolites in urine and faeces. Peak concentrations appeared in urine after 3.2 +/- 1.9 h and in faeces after 16.7 +/- 4.3 h. Altogether about 20% of the recovered metabolites were found in urine and about 80% in faeces. Using high-performance liquid chromatography (HPLC), several peaks of radioactive metabolites were found. Some metabolites were detected by enzyme immunoassay (EIA) using two different antibodies (corticosterone, 11beta-OH-aetiocholanolone). There was a marked diurnal variation with low levels of faecal corticosterone metabolites in the evening and higher values in the morning. This diurnal variation was influenced neither by the intraperitoneal injection of isotonic saline nor by ACTH. However, the administration of dexamethasone eliminated the morning peak for 2 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号