首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in plants. In Arabidopsis, 20 MAPKs have been identified and classified into four major groups (A-D). Little is known about the role of group C MAPKs. We have studied the activation of Arabidopsis subgroup C1 MAPKs (AtMPK1/AtMPK2) in response to mechanical injury. An increase in their kinase activity was detected in response to wounding that was blocked by cycloheximide. Jasmonic acid (JA) activated AtMPK1/AtMPK2 in the absence of wounding. Wound and JA-induction of AtMPK1/2 kinase activity was not prevented in the JA-insensitive coi1 mutant. Other stress signals, such as abscisic acid (ABA) and hydrogen peroxide, activated AtMPK1/2. This report shows for the first time that regulation of AtMPK1/2 kinase activity in Arabidopsis might be under the control of signals involved in different kinds of stress.  相似文献   

3.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

4.
5.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

6.
根据几种丝状真菌Hog1 MAPK的保守氨基酸序列设计简并引物,从昆虫病原真菌球孢白僵菌中扩增出MAPK同源基因的部分片段,然后利用YADE法延伸该片段的上、下游邻接序列,获得MAPK编码基因的全长序列,命名为BbHog1。序列分析表明,该基因编码358个氨基酸的多肽,推测分子量为40.99kDa,等电点为5.49。BbHog1含有MAPK保守的蛋白激酶激活域(TGY),序列与粗糙脉孢霉os-2(AF297032)、烟曲霉OSM1(XM_747571)、隐球酵母HOG1(AF243531)和酿酒酵母Hog1(Z73285)等Hog1 MAPK高度同源,相似性分别为94%、89%、83%和80%。系统聚类结果表明,BbHog1与酵母Hog1 MAPK同源。Southern杂交表明,BbHog1在球孢白僵菌基因组中以单拷贝形式存在。Northern分析表明,BbHog1在高渗、亚高温和营养胁迫等条件下的表达明显升高。由此推测,BbHog1基因可能与球孢白僵菌对逆境胁迫的适应性调节密切相关。  相似文献   

7.
根据几种丝状真菌Hog1 MAPK的保守氨基酸序列设计简并引物,从昆虫病原真菌球孢白僵菌中扩增出MAPK同源基因的部分片段,然后利用YADE法延伸该片段的上、下游邻接序列,获得MAPK编码基因的全长序列,命名为BbHog1。序列分析表明,该基因编码358个氨基酸的多肽,推测分子量为40.99kDa,等电点为5.49。BbHog1含有MAPK保守的蛋白激酶激活域(TGY),序列与粗糙脉孢霉os-2(AF297032)、烟曲霉OSM1(XM_747571)、隐球酵母HOG1(AF243531)和酿酒酵母Hog1(Z73285)等Hog1 MAPK高度同源,相似性分别为94%、89%、83%和80%。系统聚类结果表明,BbHog1与酵母Hog1 MAPK同源。Southern杂交表明,BbHog1在球孢白僵菌基因组中以单拷贝形式存在。Northern分析表明,BbHog1在高渗、亚高温和营养胁迫等条件下的表达明显升高。由此推测,BbHog1基因可能与球孢白僵菌对逆境胁迫的适应性调节密切相关。  相似文献   

8.
9.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

10.
Mitogen-activated protein (MAP) kinases cascades mediate cellular responses to a great variety of different extracellular signals in plants. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase. However, only a few of the MAPK kinases in Arabidopsis have been investigated. An active AtMKK3, 35S:AtMPK1, 35S:AtMPK2, and 35S:AtMPK3 constructs were built and their transformed plants were generated. The kinase activity of AtMPK1 or AtMPK2 was stimulated by active AtMKK3 in transient analysis of tobacco leaves. Coimmunoprecipitation experiments indicated interaction between AtMKK3 and AtMPK1 or AtMPK2 in the coexpressed tissues of AtMKK3 and AtMPK1 or AtMKK3 and AtMPK2. RT-PCR analysis showed that AtMKK3 and AtMPK1, or AtMKK3 and AtMPK2 were co-expressed in diverse plant tissues. Plants overexpressing AtMKK3 exhibited an enhanced tolerance to salt and were more sensitive to ABA. Plants overexpressing AtMPK1 or AtMPK2 were also more sensitive to ABA. AtMPK1 or AtMPK2 can be activated by cold, salt, and ABA. AtMKK3, AtMPK1, and AtMPK2 genes were induced by ABA or stress treatments. All these data indicated that the ABA signal transmitted to a MAPK kinase signaling cascade and could be amplified through MAP kinase1 or MAP kinase2 for increasing salt stress tolerance in Arabidopsis.  相似文献   

11.
12.
Angiotensin II (Ang II) plays important roles in ageing‐related disorders through its type 1 receptor (AT1R). However, the role and underlying mechanisms of AT1R in ageing‐related vascular degeneration are not well understood. In this study, 40 ageing rats were randomly divided into two groups: ageing group which received no treatment (ageing control), and valsartan group which took valsartan (selective AT1R blocker) daily for 6 months. 20 young rats were used as adult control. The aorta structure were analysed by histological staining and electron microscopy. Bcl‐2/Bax expression in aorta was analysed by immunohistochemical staining, RT‐PCR and Western blotting. The expressions of AT1R, AT2R and mitogen‐activated protein kinases (MAPKs) were detected. Significant structural degeneration of aorta in the ageing rats was observed, and the degeneration was remarkably ameliorated by long‐term administration of valsartan. With ageing, the expression of AT1R was elevated, the ratio of Bcl‐2/Bax was decreased and meanwhile, an important subgroup of MAPKs, extracellular signal‐regulated kinase (ERK) activity was elevated. However, these changes in ageing rats could be reversed to some extent by valsartan. In vitro experiments observed consistent results as in vivo study. Furthermore, ERK inhibitor could also acquire partial effects as valsartan without affecting AT1R expression. The results indicated that AT1R involved in the ageing‐related degeneration of aorta and AT1R‐mediated ERK activity was an important mechanism underlying the process.  相似文献   

13.
Medicago truncatula, a model for legume genomics, can be regenerated by somatic embryogensis by the use of a suitable genotype and an auxin plus cytokinin. The stress response induced by explant wounding and culture is increasingly recognized as an important component of somatic embryo induction. We have cloned and investigated the stress kinase gene MtSK1 in relation to somatic embryogenesis in M. truncatula, using the highly embryogenic mutant Jemalong 2HA (2HA) and its progenitor Jemalong. The main features of the MtSK1 protein of 351 amino acids are an N-terminal kinase domain and a C-terminal glutamic acid-rich region, which is predicted to be a coiled-coil. MtSK1 is a member of the SnRK2 subgroup of the SnRK group of plant kinases. Members of the SnRK2 kinases play a role in stress responses of plants. MtSKI expression is induced by wounding in the cultured tissue independent of auxin or cytokinin. However, in both 2HA and Jemalong, as the callus develops in response to auxin plus cytokinin, MtSK1 expression continues to increase. MtSK1 responds to salt stress in vivo, consistent with its role as a stress kinase. The likely role of MtSK1 in stress-induced signaling will facilitate the relating of stress–response pathways to auxin and cytokinin-induced signaling in the understanding of the molecular mechanisms involved in the induction of somatic embryogenesis in M. truncatula.  相似文献   

14.
Mitogen‐activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross‐talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross‐kingdom pathogen F. oxysporum.  相似文献   

15.
16.
Seo JS  Keum YS  Hu Y  Lee SE  Li QX 《Biodegradation》2007,18(1):123-131
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.  相似文献   

17.
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.  相似文献   

18.
We investigated a structural characteristics of acetyl fucoidan (CAF) isolated from commercially cultured Cladosiphon okamuranus. The CAF-induced macrophage activation and its signaling pathways in murine macrophage cell line, RAW 264.7 were also investigated. From the results of methylation analysis, CAF consisted of α-1→3 linked l-fucosyl residues and substituted sulfate and acetyl groups at C-4 on the main chain. CAF induced production of nitric oxide (NO), tumor necrosis factor-α and interleukin-6 in RAW 264.7 cells. Sulfate and acetyl groups of CAF involved in CAF-induced NO production. Neutralizing anti-Toll-like receptor 4 (TLR4), anti-CD14 and anti-scavenger receptor class A (SRA) but not anti-complement receptor type 3 monoclonal antibodies decreased CAF-induced NO production. The results of immunoblot analysis indicated that CAF activated mitogen-activated protein kinases (MAPKs) such as p38 MAPK, extracellular signal-regulated kinase (ERK)1/2 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). SB203580 (p38 MAPK inhibitor) and SP600125 (SAPK/JNK inhibitor), but not U0126 (MAPK/ERK kinase 1/2 inhibitor) decreased CAF-induced NO production. The results suggested that CAF induced macrophage activation through membrane receptors TLR4, CD14 and SRA, and MAPK signaling pathways.  相似文献   

19.
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号