首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Protein kinase B (PKB/AKT) has been identified as a promising cancer drug target downstream of PI3 kinase. To find novel inhibitors of PKB/AKT kinase activity for progression as anticancer agents, the authors have used a high-throughput screen based on AlphaScreentrade mark technology. A known kinase inhibitor, the isoquinoline H8, was used as a positive control with mean inhibition in the screen of 43.4% +/- 13.1%. The performance of the screen was highly acceptable with Z' and Z factors of 0.83 +/- 0.07 and 0.75 +/- 0.04, respectively. A number of confirmed hits ( approximately 0.1% hit rate) were identified from 63,500 compounds screened. Five compounds have previously been described as PKB inhibitors, demonstrating the ability of the assay to find authentic inhibitors of the enzyme. Five hits had the potential to interfere with the assay signal and were deemed to be false positives. Two compounds were nonspecific inhibitors of PKB as enzyme inhibition in a filter-based assay was markedly reduced in the presence of 0.01% Triton X100. The authors now include an interference assay during hit confirmation procedures and check compound activity in the presence of Triton X100 in an attempt to eliminate nonspecific aggregators at an early stage.  相似文献   

2.
Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell-permeable modulators for development. For this purpose, we have used our recently optimized epidermal growth factor receptor (EGFR) biosensor assay to screen for modulators of EGFR activity. Here, we report on its validation under high-throughput screening (HTS) conditions displaying a signal-to-noise ratio of 21 and a Z' value of 0.56-attributes of a robust cell-based assay. We performed a pilot screen against a library of 6912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95%, respectively. Follow-up dose-response studies revealed that 12 of the 13 known EGFR inhibitors in the library were confirmed as hits. ZM-306416, a vascular endothelial growth factor receptor (VEGFR) antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone, and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.  相似文献   

3.
The human mitochondrial peptide deformylase (HsPDF) provides a potential new target for broadly acting antiproliferative agents. To identify novel nonpeptidomimetic and nonhydroxamic acid-based inhibitors of HsPDF, the authors have developed a high-throughput screening (HTS) strategy using a fluorescence polarization (FP)-based binding assay as the primary assay for screening chemical libraries, followed by an enzymatic-based assay to confirm hits, prior to characterization of their antiproliferative activity against established tumor cell lines. The authors present the results and performance of the established strategy tested in a pilot screen of 2880 compounds and the identification of the 1st inhibitors. Two common scaffolds were identified within the hits. Furthermore, cytotoxicity studies revealed that most of the confirmed hits have antiproliferative activity. These findings demonstrate that the designed strategy can identify novel functional inhibitors and provide a powerful alternative to the use of functional assays in HTS and support the hypothesis that HsPDF inhibitors may constitute a new class of antiproliferative agent.  相似文献   

4.
The leukocyte-specific integrin CD11b/CD18 plays a key role in the biological function of these cells and represents a validated therapeutic target for inflammatory diseases. Currently, the low affinity interaction between CD11b/CD18 integrin and its respective ligand poses a challenge in the development of cell-based adhesion assays for the high-throughput screening (HTS) environment. Here the authors describe a simple cell-based adhesion assay that can be readily used for HTS for the discovery of functional regulators of CD11b/CD18. The assay consistently produces acceptable Z' values (> 0.5) for HTS. After testing the assay using 2 established blocking antibodies as reference biologicals, the authors performed a proof-of-concept primary screen using a library of 6612 compounds and identified both agonist and antagonist hits.  相似文献   

5.
Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.  相似文献   

6.
The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.  相似文献   

7.
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) is a key enzyme in a biosynthetic pathway for isoprenoids that is unique to eubacteria and plants. Dxr catalyzes the rearrangement and NADPH-dependent reduction of 1-deoxy-D-xylulose 5-phosphate to 2-C-methyl-D-erythritol 4-phosphate. The authors have purified Escherichia coli Dxr and devised a high-throughput screen (HTS) for compounds that bind to this enzyme at a functional site. Evidence is presented that the surrogate ligand directly binds or allosterically affects both the D-1-deoxyxylulose 5-phosphate (DXP) and NADPH binding sites. Compounds that bind at either or both sites that compete for binding with the surrogate ligand register as hits. The time-resolved fluorescence-based assay represents an improvement over the Dxr enzyme assay that relies on relatively insensitive measurements of NADPH oxidation. Screening 32,000 compounds from a diverse historical library, the authors obtained 89 potent inhibitors in the surrogate ligand competition assay. The results presented here suggest that peptide surrogate ligands may be useful in formatting HTS for proteins with difficult biochemical assays or targets of unknown function.  相似文献   

8.
Despite advancements in therapies developed for the treatment of cancer, patient prognosis and mortality rates have improved minimally, and metastasis remains the primary cause of cancer mortality worldwide. An underlying mechanism promoting metastasis in many types of cancer is epithelial-mesenchymal transition (EMT). Here the authors report a novel 3D model of EMT and metastatic breast cancer suitable for high-throughput screening (HTS) drug discovery. The primary assay incorporates the expression of the prognostic biomarker vimentin, as a luciferase reporter of EMT, in basil-like/triple-negative MDA-MB-231 breast carcinoma spheroids. Using this model, the authors developed a number of known antitumor agents as control modulators of EMT. U0126, PKC412, PF2341066, dasatinib, and axitinib downregulated vimentin expression by 70% to 90% as compared to untreated spheroids. Counterassays were developed to measure spheroid viability and the invasive potential of MDA-MB-231 spheroids after small-molecule treatment and used to confirm hits from primary screening. Finally, the authors conducted a pilot screen to validate this model for HTS using a purified library of marine secondary metabolites. From 230 compounds screened, they obtained a Z' score of 0.64, indicative of an excellent assay, and confirmed 4 hits, including isonaamidine B, papuamine, mycalolide E, and jaspamide. This HTS model demonstrates the potential to identify small-molecule modulators of EMT that could be used to discover novel antimetastatic agents for the treatment of cancer.  相似文献   

9.
10.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of 8 molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C55-undecaprenyl pyrophosphate, which is required for bacterial cell wall synthesis. UPPS is found in both gram-positive and gram-negative bacteria, and based on the differences between bacterial variants of UPPS and their human counterpart, dolicopyrophosphate synthase, it was identified as an attractive antibacterial target. An assay, which monitors the release of Pi by coupling the UPPS catalyzed reaction with inorganic pyrophosphatase, was employed to conduct an HTS campaign using an inhouse collection of compounds. A direct assay measuring the incorporation of 14C-IPP (isopentenyl pyrophosphate) was used as a secondary assay to evaluate the high-throughput screening (HTS) hits. From the HTS campaign, a few classes of UPPS inhibitors were identified. During the process of hit evaluation by the direct assay, the authors observed that Triton, an essential factor for the enzyme activity and accurate formation of the natural product, dramatically altered the inhibitory activity of a particular class of compounds. Above its critical micellar concentration (CMC), Triton abolished the inhibitory activity of these compounds. Further research will be required to establish the biophysical phenomenon that causes this effect. Meanwhile, it can be speculated that Triton (and other detergents) above CMC may hinder the identification in screening compounds of certain classes of hits.  相似文献   

11.
A functional cell-based assay was developed using a generic proprietary assay protocol, based on a membrane-potential sensitive dye, for the identification of small-molecule antagonists against the Kv1.3 potassium ion channel. A high-throughput screen (HTS) was subsequently performed with 20,000 compounds from the Evotec library, preselected using known small molecule antagonists for both sodium and potassium ion channels. Following data analysis, the hit rate was measured at 1.72%, and subsequent dose-response analysis of selected hits showed a high hit confirmation rate yielding approximately 50 compounds with an apparent IC50 value lower than 10 microM. Subsequent electrophysiological characterization of selected hits confirmed the initial activity and potency of the identified hits on the Kv1.3 target and also selectivity toward Kv1.3 through measurements on HERG as well as Kv1.3-expressing cell lines. Follow-up structure-activity relationship analysis revealed a variety of different clusters distributed throughout the library as well as several singlicates. In comparison to known Kv1.3 blockers, new chemical entities and scaffolds showing potency and selectivity against the Kv1.3 ion channel were detected. In addition, a screening strategy for ion channel drug discovery HTS, medicinal chemistry, and electrophysiology is presented.  相似文献   

12.
Both the tricyclic and specific serotonin reuptake inhibitor classes of antidepressants act primarily by inhibiting the reuptake of released serotonin by the human serotonin reuptake transporter (hSERT). In this article, the authors describe the use of a fluorescent substrate of the transporter (4-(4-(dimethylamino)-styrl)-N-methylpyridinium, ASP) to develop a microplate-based high-throughput screen for hSERT function. The assay is sensitive to known inhibitors of serotonin uptake, including fluoxetine (Prozac), with the correct rank order of potency and IC(50) values close to those reported in the literature for tritiated serotonin uptake. The authors also describe the validation of the assay for natural product screening using a test set of 2400 pure phyto-chemicals and 80 plant extracts. The mean Z of the screened plates was 0.53. Hit rates, confirmation rates, and validation of the hits in a "classical" assay for serotonin uptake are all reported. The assay can also be read in "high-content" mode using a subcellular imaging device, which allows direct detection of possible assay interference by acutely cytotoxic compounds. Among the compounds identified were several previously reported inhibitors of the hSERT, as well as compounds having structural similarity to the tricyclic antidepressant drugs.  相似文献   

13.
The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.  相似文献   

14.
High-throughput screening (HTS) of large chemical libraries has become the main source of new lead compounds for drug development. Several specialized detection technologies have been developed to facilitate the cost- and time-efficient screening of millions of compounds. However, concerns have been raised, claiming that different HTS technologies may produce different hits, thus limiting trust in the reliability of HTS data. This study was aimed to investigate the reliability of the authors most frequently used assay techniques: scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET). To investigate the data concordance between these 2 detection technologies, the authors screened a large subset of the Schering compound library consisting of 300,000 compounds for inhibitors of a nonreceptor tyrosine kinase. They chose to set up this study in realistic HTS scale to ensure statistical significance of the results. The findings clearly demonstrate that the choice of detection technology has no significant impact on hit finding, provided that assays are biochemically equivalent. Data concordance is up to 90%. The little differences in hit findings are caused by threshold setting but not by systematic differences between the technologies. The most significant difference between the compared techniques is that in the SPA format, more false-positive primary hits were obtained.  相似文献   

15.
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a Ki value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development.  相似文献   

16.
A typical modern high-throughput screening (HTS) operation consists of testing thousands of chemical compounds to select active ones for future detailed examination. The authors describe 3 clustering techniques that can be used to improve the selection of active compounds (i.e., hits). They are designed to identify quality hits in the observed HTS measurements. The considered clustering techniques were first tested on simulated data and then applied to analyze the assay inhibiting Escherichia coli dihydrofo-late reductase produced at the HTS laboratory of McMaster University.  相似文献   

17.
Aberrant regulation of phosphoinositide 3-kinase (PI3K) activity is implicated in various diseases such as cancer and diabetes. Thus, high-throughput screening (HTS) of small-molecule inhibitors for PI3 kinases is an appealing strategy for drug development. Despite the attractiveness of lipid kinases as drug targets, screening for inhibitors for PI3K activities has been hampered by limited assay formats adaptable for HTS. The authors describe a homogeneous, direct, and nonradioactive assay for highly sensitive detection of PI3Kalpha, beta, delta, and gamma activities, which is suitable for HTS. The assay is based on fluorescence superquenching of a conjugated polymer upon metal-ion-mediated association of phosphorylated and dye-labeled substrates. As a result of phosphorylation, quencher and polymer are brought into proximity, and fluorescent energy transfer occurs. This event can be monitored as either fluorescence quench of the polymer or as enhanced emission from the quencher. Ratiometric analysis of the wavelengths eliminates interferences from autofluorescing compounds, which are present in HTS libraries. The platform has been adapted for the 384-well microplate format and delivers Z factors of > 0.6 at substrate conversions as low as 7%. Using this assay platform, several unreported inhibitors and activators of PI3Ks were identified in an 84- compound screen.  相似文献   

18.
Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators. Herein, the authors developed a fluorescence-based assay for measuring activity of the autophagy protease, autophagin-1(Atg4B). The assay employs a novel reporter substrate of Atg4B composed of a natural substrate (LC3B) fused to an assayable enzyme (PLA(2)) that becomes active upon cleavage by this cysteine protease. A high-throughput screening (HTS) assay was validated with excellent Z' factor (>0.7), remaining robust for more than 5 h and suitable for screening of large chemical libraries. The HTS assay was validated by performing pilot screens with 2 small collections of compounds enriched in bioactive molecules (n = 1280 for Lopac? and 2000 for Spectrum? library), yielding confirmed hit rates of 0.23% and 0.70%, respectively. As counterscreens, PLA(2) and caspase-3 assays were employed to eliminate nonspecific inhibitors. In conclusion, the LC3B-PLA(2) reporter assay provides a platform for compound library screening for identification and characterization of Atg4B-specific inhibitors that may be useful as tools for interrogating the role of autophagy in disease models.  相似文献   

19.
A central challenge in chemical biology is profiling the activity of a large number of chemical structures against hundreds of biological targets, such as kinases. Conventional 32P-incorporation or immunoassay of phosphorylated residues produces high-quality signals for monitoring kinase reactions but is difficult to use in high-throughput screening (HTS) because of cost and the need for well-plate washing. The authors report a method for densely archiving compounds in nanodroplets on peptide or protein substrate-coated microarrays for subsequent profiling by aerosol deposition of kinases. Each microarray contains over 6000 reaction centers (1.0 nL each) whose phosphorylation progress can be detected by immunofluorescence. For p60c-src, the microarray produced a signal-to-background ratio of 36.3 and Z' factor of 0.63 for HTS and accurate enzyme kinetic parameters (KmATP = 3.3 microM) and IC50 values for staurosporine (210 nM) and PP2 (326 nM) at 10 microM adenosine triphosphate (ATP). Similarly, B-Raf phosphorylation of MEK-coated microarrays was inhibited in the nanoliter reactions by GW5074 at the expected IC50 of 9 nM. Common kinase inhibitors were printed on microarrays, and their inhibitory activities were systematically profiled against B-Raf (V599E), KDR, Met, Flt-3 (D835Y), Lyn, EGFR, PDGFRbeta, and Tie2. All results indicate that this platform is well suited for kinetic analysis, HTS, large-scale IC50 determinations, and selectivity profiling.  相似文献   

20.
Histone deacetylase (HDAC) enzymes modify the acetylation state of histones and other important proteins. Aberrant HDAC enzyme function has been implicated in many diseases, and the discovery and development of drugs targeting these enzymes is becoming increasingly important. In this article, the authors report the evaluation of homogeneous, single-addition, bioluminogenic HDAC enzyme activity assays that offer less assay interference by compounds in comparison to fluorescence-based formats. The authors assessed the key operational assay properties including sensitivity, scalability, reproducibility, signal stability, robustness (Z'), DMSO tolerance, and pharmacological response to standard inhibitors against HDAC-1, HDAC-3/NcoR2, HDAC-6, and SIRT-1 enzymes. These assays were successfully miniaturized to a 10 μL assay volume, and their suitability for high-throughput screening was tested in validation experiments using 640 drugs approved by the Food and Drug Administration and the Hypha Discovery MycoDiverse natural products library, which is a collection of 10 049 extracts and fractions from fermentations of higher fungi and contains compounds that are of low molecular weight and wide chemical diversity. Both of these screening campaigns confirmed that the bioluminogenic assay was high-throughput screening compatible and yielded acceptable performance in confirmation, counter, and compound/extract and fraction concentration-response assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号