首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular cartilage is known to be anisotropic and inhomogeneous because of its microstructure. In particular, its elastic properties are influenced by the arrangement of the collagen fibres, which are orthogonal to the bone-cartilage interface in the deep zone, randomly oriented in the middle zone, and parallel to the surface in the superficial zone. In past studies, cartilage permeability has been related directly to the orientation of the glycosaminoglycan chains attached to the proteoglycans which constitute the tissue matrix. These studies predicted permeability to be isotropic in the undeformed configuration, and anisotropic under compression. They neglected tissue anisotropy caused by the collagen network. However, magnetic resonance studies suggest that fluid flow is "directed" by collagen fibres in biological tissues. Therefore, the aim of this study was to express the permeability of cartilage accounting for the microstructural anisotropy and inhomogeneity caused by the collagen fibres. Permeability is predicted to be anisotropic and inhomogeneous, independent of the state of strain, which is consistent with the morphology of the tissue. Looking at the local anisotropy of permeability, we may infer that the arrangement of the collagen fibre network plays an important role in directing fluid flow to optimise tissue functioning.  相似文献   

2.
By means of transmissive and scanning electron microscopy (investigation of ultra-replicas) three-dimensional organization of the interstitial (interfibrillar) space of the articular cartilage has been demonstrated; it repeats, to some extent, construction of the fibrous base. By means of mercury porometry quantitative characteristics of various parameters of the interfibrillar space are obtained. Their specific volume is 0.96 cm3/g of the dehydrated cartilage, space with equivalent diameters from 300 up to 5 nm makes 94%. By means of the gas adsorption method it has been stated that the specific internal surface is 23.8 m2 per 1 g of the dehydrated articular cartilage. Transmissive and scanning electron histochemistry has revealed several various forms of structured proteoglycans, demonstrated their spatial organization and interconnection with collagenous fibrils. The methodical complex applied can be used for investigating the connective tissue interstitial spaces in other parts of the human locomotor apparatus.  相似文献   

3.
The structure and distribution of collagen fibres in chordae tendineae, anterior leaflet and annulus fibrous of human mitral valve has been investigated using high and small angle X-ray diffraction. The molecular packing of collagen in native mitral valve components is very similar to that in native rat tail tendon. The distribution and orientation of collagen fibres in unstretched and stretched specimens has been deduced by the arcing of the high and small angle meridional reflections. Collagen fibres, which are aligned along the chordae tendineae, are preferentially distributed along the branchings of the chordae into the anterior leaflet and then course towards the annulus fibrous. However, in the anterior leaflet a considerable amount of collagen fibres are organized in a tridimensional isotropic network even after high deformation of the tissue.  相似文献   

4.
Bovine and human epidermal cells were cultured on mitomycin C treated fibroblasts. The cells were carried through four passages and found to synthesize fibrous proteins and insoluble cell envelopes. Acid buffer soluble fibrous protein, prekeratin, and urea soluble fibrous protein were both identified and the latter was the major component in older cultures. Some of the prekeratin polypeptides of intact tissue were not found in cultured cells, but the ones that were present corresponded to those of whole tissue. X-ray diffraction, amino acid analysis and immunological techniques were used to establish that the polypeptides were keratins. The insoluble cell envelopes had a higher proline and 1/2 cystine content than the fibrous protein, similar to what is found in whole epidermis. Histidase, a characteristic enzyme marker of whole epidermis, was not observed in cultured cells. These studies indicate that differentiation occurs in cultured cells but it may not be as complete as in intact tissue.  相似文献   

5.
Stimulation of rat serosal mast cells in vitro triggers exocytosis of secretory granules from their cytoplasm. Thereupon, the granules lose their perigranular membranes, and about 40% of the heparin proteoglycans and all of the chondroitin sulfate proteoglycans that they initially contained are released into the incubation medium. At physiologic ionic strength and calcium ion concentration, the solubilized heparin proteoglycans, but not the chondroitin sulfate proteoglycans, form insoluble complexes with the low density lipoproteins (LDL) present. We calculated that the heparin proteoglycans could bind approximately seven times their own mass (Mr about 1 x 10(6)) of LDL cholesterol. Using gold-labeled LDL, we observed massive phagocytosis of the heparin proteoglycan-LDL complexes by cultured mouse macrophages in vitro, which was inhibited by cytochalasin B. Uptake of LDL by mouse macrophages was 45-fold higher in the presence of solubilized heparin proteoglycans than in their absence, and continued unabated over a 72-h period, indicating that the uptake process was not under negative feedback control. Excess amounts of acetyl-LDL or polyinosinic acid inhibited the uptake of these insoluble heparin proteoglycan-LDL complexes, indicating that their phagocytosis was mediated by scavenger receptors of the acetyl-LDL receptor type. The experiments reveal the following pathophysiologic mechanism relevant to atherogenesis: stimulated mast cells secrete soluble heparin proteoglycans capable of forming insoluble complexes with LDL and thereby trigger uptake of LDL by macrophages through scavenger receptor-mediated phagocytosis.  相似文献   

6.
We studied structure and ultrastructure of the subepidermal connective tissue (SEC) of the integument of three cephalopods (Sepia officinalis, Octopus vulgaris and Loligo pealii). In all species, three distinct regions of the SEC were recognised: (a) an outer zone (OZ) that included the dermal-epidermal junction, and consisted of a thin layer of connective tissue containing muscles, (b) an extensive middle zone (MZ) containing a compact network of collagen fibres and numerous cells, (c) an inner zone (IZ) of loose connective tissue that merged with muscular fascia. This arrangement differs from that in bivalves and gastropods and recalls vertebrate integument. The dermal-epidermal junction of cephalopods differed from that of bivalves, gastropods and mammals in that the epidermal cells did not possess hemidesmosomes, and their intermediate filaments terminated directly in the plasmamembrane. The thick (120-500 nm) basal membrane (BM) had a superficial zone containing a regular array of granules; a lamina densa composed of a compact network of small filaments and granules; and an IZ distinguished by expansions of granular material protruding into underlying structures. Collagen fibres contained fibroblast-derived cytoplasmic thread, running through their centres and were surrounded by granular material that joins them to adjacent fibres. The collagen fibrils were of medium diameter (30-80 nm) had the typical ultrastructure of fibrillar collagens, and were surrounded by abundant interfibrillar material. The hypodermis was loose, with a network of small bundles of collagen fibrils. Cephalopod integument appears to represent a major evolutionary step distinguishing this class of molluscs.  相似文献   

7.
To allow a more valid comparison between our previous ultrastructural data and the immunolocalization of type IX and other minor collagen species in cryosectioned cartilage, we examined both normal and testicular hyaluronidase-digested canine tibial cartilage by electron microscopy. Removal of matrix proteoglycans caused the pericellular capsule to collapse against the cell surface, suggesting that its normal anatomical position is mediated by pericellular matrix hydration. Detailed examination of the pericellular capsule and pericellular channel revealed fine, faintly banded fibrils and an amorphous component somewhat similar in structure to basement membrane collagens. Matrix vesicles and the electron-dense material of the interterritorial matrix were only partially digested by hyaluronidase. We propose that the pericellular capsule is composed of a "felt-like" network of minor collagen species which act synergistically to maintain both the composition of the pericellular matrix and the integrity of the chondrocyte/pericellular matrix complex during compressive loading.  相似文献   

8.
Proteoglycan changes during restoration of transparency in corneal scars   总被引:6,自引:0,他引:6  
Corneal scars generated in rabbits by penetrating wounds are initially opaque but become transparent within a year. Previous studies have shown that the corneal stroma consists of proteoglycans and collagen fibrils spaced at regular intervals and that the interfibrillar spaces, the presumed location of proteoglycans, are abnormally large in opaque scars. In the present study, the size and glycosaminoglycan composition of the corneal stromal proteoglycans were determined in corneal scars during the restoration of transparency. The results showed that initially opaque scars which contained the large interfibrillar spaces also contained unusually large chondroitin sulfate proteoglycans with glycosaminoglycan side chains of normal size. These opaque scars also lacked the keratan sulfate proteoglycan but did contain hyaluronic acid. In the 1-year-old scars there was a restoration of normal interfibrillar spacing, and a return to corneal stromal proteoglycans of normal size and composition. These correlations suggest that the corneal stromal proteoglycans may play a fundamental role in regulating corneal collagen fibril spacing.  相似文献   

9.
Sea urchins and sea cucumbers, like other echinoderms, control the tensile properties of their connective tissues by regulating stress transfer between collagen fibrils. The collagen fibrils are spindle-shaped and up to 1 mm long with a constant aspect ratio of approx. 2000. They are organized into a tissue by an elastomeric network of fibrillin microfibrils. Interactions between the fibrils are regulated by soluble macromolecules that are secreted by local, neurally controlled, effector cells. We are characterizing the non-linear viscoelastic properties of sea cucumber dermis under different conditions, as well as the structures, molecules and molecular interactions that determine its properties. In addition, we are developing reagents that will bind covalently to fibril surfaces and reversibly form cross-links with other reagents, resulting in a chemically controlled stress-transfer capacity. The information being developed will lead to the design and construction of a synthetic analogue composed of fibres in an elastomeric matrix that contains photo- or electro-sensitive reagents that reversibly form interfibrillar cross-links.  相似文献   

10.
Summary The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15–40 nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin ( 3 nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker ( 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen.Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates. However, partially desulphated chondroitin sulphate (5mg/ml) strongly retarded the migration of NC cells.The in vivo and in vitro studies suggest that fibronectin may dictate the pathways of NC cell migration by acting as a highly preferred physical substrate. However, the utilization of these pathways may be reduced by the presence of proteoglycans bearing undersulphated chondroitin sulphate.Abbreviations NC neural crest - ECM extracellular material - GAG glycosaminoglycan - FN fibronectin - CIG cold insoluble globulin - TEM transmission electron microscopy - SEM scanning electron microscopy - DMEM-H HEPES buffered Dulbecco's modified Eagle's medium - FCS foetal calf serum - CEE chick embryo extract - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

11.
The chondrocyte is a specialized cell that synthesizes proteoglycans of a type found only in cartilage and nucleus pulposus. These proteoglycans are distinct in forming multiple aggregates of unique structure in which hyaluronic acid provides a central chain to which many proteoglycan molecules are bound at one end only. Chondrocytes were isolated from adult cartilage and used in suspension culture to test the effect of compounds in the medium on the synthesis of proteoglycans. Hyaluronic acid alone, among a number of compounds extracted from or analogous to those in cartilage, reduced the incorporation of [35S] sulphate into macromolecular material.Oligosaccharides of hyaluronic acid of the size of decasaccharides and above also had this effect but hyaluronic acid already bound to proteoglycan did not. The proportion of total labelled material associated with the cells increased at the expense of that in the medium. Treatment of the cells with trypsin abolished the effect of hyaluronic acid but treatment with chondroitinase did not. It is suggested that hyaluronic acid interacts with proteoglycans at the cell surface by a specific mechanism similar to that involved in proteoglycan aggregation, as a result of which the secretion and synthesis of proteoglycans is reduced.  相似文献   

12.
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.  相似文献   

13.
1. Cell-free enzymes from Myrothecium verrucaria and Trichoderma koningii hydrolyse native undegraded cellulose, as found in cotton fibres, in a random manner to short insoluble fibres and to minor amounts of soluble products. 2. Enzyme preparations from M. verrucaria fail to attack the short fibres whereas preparations from T. koningii solubilize them completely to sugars at an optimum pH4.2-4.6. 3. The mode of hydrolysis of cotton cellulose by preparations from T. koningii involves from the earliest stages the formation of reducing sugars, followed closely by the appearance of short fibres, until the insoluble and soluble products each constitute about 40-50% of the weight of the initial substrate. After this stage the quantity of sugars increases at the expense of the insoluble short fibres. 4. Depending upon the method of preparation, derived forms of cellulose may be hydrolysed more slowly, much more rapidly, or at the same rate as cotton fibres by enzyme preparations from T. koningii.  相似文献   

14.
The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.  相似文献   

15.
Abstract

The focus of this review is on conceptual and functional advances in our understanding of the small leucine-rich proteoglycans. These molecules belong to an expanding gene class whose distinctive feature is a structural motif, called the leucine-rich repeat, found in an increasing number of intracellular and extracellular proteins with diverse biological attributes. Three-dimensional modeling of their prototype protein core proposes a flexible, arch-shaped binding surface suitable for strong and distinctive interactions with ligand proteins. Changes in the properties of individual proteoglycans derive from amino acid substitutions in the less conserved surface residues, changes in the number and length of the leucine-rich repeats, and/or variation in glycosylation. These proteoglycans are tissue organizers, orienting and ordering collagen fibrils during ontogeny and in pathological processes such as wound healing, tissue repair, and tumor stroma formation. These properties are rooted in their bifunctional character: the protein moiety binding collagen fibrils at strategic loci, the microscopic gaps between staggered fibrils, and the highly charged glycosaminoglycans extending out to regulate interfibrillar distances and thereby establishing the exact topology of fibrillar collagens in tissues. These proteoglycans also interact with soluble growth factors, modulate their functional activity, and bind to cell surface receptors. The latter interaction affects cell cycle progression in a variety of cellular systems and could explain the purported changes in the expression of these gene products around the invasive neoplastic cells and in regenerating tissues.  相似文献   

16.
The existence of cytokinins both as a free form and as a constituent of t-RNA was investigated in young fruits of Moringa pterigosperma Gaertn. Purified methanol extract was separated into butanol insoluble and butanol soluble fractions. The cytokinin(s) in the butanol insoluble fraction was tentatively identified as zeatin nucleotide. The butanol soluble fraction contained cytokinins and was chromatographed on Sephadex LH-20 with 35% ethanol. The two active fractions from LH-20 column coincided with zeatin and zeatin riboside. Cytokinin per g tissue was high in early stages of fruit growth and then remained more or less constant. Alkaline phosphatase hydrolysis of t-RNA hydrolysate of fruit tissue showed considerable cytokinin activity.  相似文献   

17.
In 50 mature Chinchilla rabbits a model of chronic insufficiency of blood supply in the lumbar vertebral bodies has been disturbed as a result of unilateral sectioning of the segmentary arteries and veins. By means of light and transmissive electron microscopy the dynamics of structural changes has been followed in tissue of the intervertebral discs for 3 months after the operative intervention. Under hypoxia in the ground substance of the pulposus++ nucleus even proteoglycans granular-filamentous network gradually develops and floccular material and transverse striated filamentous aggregates are accumulated. Notochord cells are subjected to certain degenerative changes and die. Simultaneously fibroblastic cells of the pulposus++ nucleus periphery become activated, they produce glycosaminoglycans and collagen. As a result the hydrated tissue of the pulposus++ nucleus is substituted for a newly formed fibrous cartilage. The process of fibroses in the intervertebral disc is completed in 3 months after blood circulation has been disturbed in the vertebral bodies.  相似文献   

18.
In the present investigation, evidence is presented directly implicating proteoglycans produced by the embryonic notochord in the control of somite chondrogenesis. It has been demonstrated by several histochemical techniques that during the period of its interaction with somites, the notochord synthesizes perinotochordal proteoglycans, and these proteoglycans have been shown to contain chondroitin 4-sulfate (40%), chondroitin 6-sulfate (40%), and heparan sulfate (20%). Dissection of notochords from embryos with the aid of a brief treatment with trypsin results in the removal of perinotochordal extracellular matrix materials including proteoglycans, while dissection of notochords without the aid of enzyme treatment or with a low concentration of collagenase results in their retention. There is a considerable increase in the rate and amount of cartilage formation and a corresponding 2 to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated by somites cultured in association with notochords dissected under conditions in which perinotochordal materials are retained. Treatment of collagenase-dissected or freely dissected notochords with highly purified enzymes (chondroitinase ABC, AC, and testicular hyaluronidase) which specifically degrade proteoglycans causes a loss of histochemically detectable perinotochordal proteoglycans. These notochords are considerably impaired in their ability to support in vitro somite chondrogenesis. In addition, when trypsin-treated notochords are cultured (“precultured”) for 24 hr on nutrient agar (in the absence of somites), perinotochordal material reaccumulates. Somites cultured in association with such “precultured” notochords exhibit considerable increase in the amount of cartilage formed and a 2- to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated as compared to somites cultured in association with trypsin-treated notochords which have not been “precultured.” This observation indicates that trypsin-treated notochords reacquire their ability to maximally stimulate in vitro somite chondrogenesis by resynthesizing and accumulating perinotochordal material. Finally, “precultured” notochords treated with chondroitinase to remove perinotochordal proteoglycans are considerably impaired in their ability to support in vitro somite chondrogenesis. These observations are consonant with the concept that proteoglycans produced by the embryonic notochord play an important role in somite chondrogenesis.  相似文献   

19.
A laboratory method for determination of fibres insoluble by cellulase is suggested as a routine analysis for cattle compound feeds with varying proportion and quality of chemically treated straw and other fibrous components, in order to measure whether actual energy content corresponds to that declared.By a two-step analytical procedure, the total fibre is isolated by boiling with neutral detergent solution for 1 h, which removes the readily soluble carbohydrates, proteins and fat. By incubation of the isolated fibre in a solution of buffers and a commercial cellulase reagent for 48 h at 40°C the digestible fibre is removed. The organic matter in the residue, which is termed cellulase insoluble fibre (CIF), is a measure of unavailable organic matter for ruminants.The CIF content, total NDF and proximate constituents were determined in 47 compounds of extreme properties. Compared with digestibility in vitro (IVDOM), more organic matter was dissolved by the CIF-analyses in highly digestible feeds and less in feeds with low digestibility (IVDOM + fat = 87 ? 0.70 CIF).  相似文献   

20.
A routine, reproducible procedure was developed for the preparation and characterization of stromal cells from normal human breast tissue obtained by reduction mammaplasty. Isolates (n = 15) all exhibited enhanced rates of proliferation, even in the presence of 20% fetal calf serum, when exposed to epidermal growth factor or transforming growth factor a (both 10(-8) M). Cellular responsiveness to these growth factors was consistent with expression of specific surface receptors for epidermal growth factor (approximately 10(4)/cell). In cultures, stromal cells elaborated an extensive, cross-linked, insoluble extracellular matrix which remained firmly associated with the plastic surface of tissue culture ware upon lysis of cells. The insoluble matrix material was analyzed using enzymatic digestion procedures following incorporation of radiolabelled precursors into macromolecular material prior to lysis and preparation. The relative proportion of glycoconjugate (glycopeptides and proteoglycans) and collagenous material present in matrix material was approximately 45% and approximately 55%, respectively, and this was modulated by inclusion of epidermal growth factor into culture medium to approximately 60% and approximately 40%, respectively. Under similar culture conditions stromal cells synthesized twice as much hyaluronate as was produced by control cultures. By use of specific antibody preparations we identified at least four species of glycopeptide present in stromal matrices (namely, fibronectin, laminin, tenascin, and thrombospondin) as well as three types of collagen (types I, III, and IV). The rapid and reproducible procedure for the preparation of radiolabelled insoluble matrix material from normal human breast tissue allows for the study of cellular interaction involving extracellular matrix turnover and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号