首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innervation of the pineal organ was studied in 26 avian species under particular consideration of comparative aspects. A population of nerve cells and their pinealofugal (afferent) fiber systems were stained by means of the acetylcholinesterase method, while catecholamine-containing pinealopetal (efferent) fibers were demonstrated with the use of the glyoxylic acid method. Afferent axons were mainly found in the postero-proximal portion of the organ, and the patterns of their distribution were classified into three groups according to the characteristic densities of the reaction product. The number of acetylcholinesterase-positive neurons in the avian pineal organs examined in this study varied extremely from species to species, ranging from 0 to 362. Catecholamine-containing nerve fibers penetrating the antero-lateral walls of the pineal follicles accompanied blood vessels and were arranged more densely in the distal portion of the organ, in contrast to the distribution of the acetylcholinesterase-positive nerve fibers. Three-dimensional reconstruction of the distributional patterns of both types of neural projections was performed for the pineal organ of every avian species examined. In avian species possessing a relatively conspicuous afferent projection, such as Passeriformes, Nycticorax, and Milvus, terminals of catecholamine-containing nerve fibers were observed exclusively in the interfollicular and perivascular tissues. In Galliformes, which display only few pineal afferents, catecholamine-containing fibers terminate not only in the interfollicular space, but also in the neuroepithelial parenchyma. The regional differences in the innervation in the avian pineal organ suggest that the pinealocytes ranging from more sensory-like to more secretory-like elements are arranged in a mosaic-like pattern.  相似文献   

2.
The locus coeruleus (LC) or superior cervical ganglion (SCG) of neonatal rats were co-cultured either with the pineal organ or cerebral cortex (CX) to investigate the innervating capacity of central and peripheral catacholamine neurons under these experimental conditions. After 2 weeks of co-culturing, cultures were fixed for tyrosine hydroxylase (TH) immunohistochemistry to examine the distribution of catecholamine neurons and their fibers. Glial fibrillary acidic protein and fibronectin immunohistochemistry was performed to determine the cell types proliferating around the explants. In LC/CX co-cultures, numerous astrocytes spread between the two explants, and TH-immunoreactive neurites were generally seen to invade CX explants. In contrast, neurite extension from LC to pineal explants occurred only when a glial cell sheet grew between the two explants, and when the pineal explants were not surrounded by a tight fibronectin-positive cell layer. Neurites of the SCG usually invaded both CX and pineal explants, regardless of the existence of glial or non-glial cell layer. These results indicate that central and peripheral catecholamine neurites have the potential of invading both the cortex and pineal, although they are distributed only in particular regions of the intact brain. The distribution of LC neurites, however, seems to be profoundly affected by the cell types spreading around the explants; glial cells appear to support LC neurite extension, whereas non-glial cells appear to inhibit it.  相似文献   

3.
Summary Postnatal development of the innervation of the pineal gland in situ as well as the reinnervation of pineal grafts by tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive nerve fibers were examined using the avidin-biotin-peroxidase immunohistochemical technique. TH-immunoreactive nerve fibers appeared in the pineal gland on the second postnatal day (P2) in both hamsters and gerbils. NPY-immunoreactive nerve fibers first appeared in the pineal gland of gerbils on P2 and in the hamsters on P3. By the seventh postnatal day (P7), the pineal glands of both hamsters and gerbils were richly innervated by TH- and NPY-fibers that appeared as smooth fibers or fibers with sporadic varicosities. By the age of 4 weeks, the innervation of the pineal glands of hamsters and gerbils by TH-and NPY-fibers was fully developed. Abundant TH- and NPY-fibers formed a dense meshwork in the parenchyma of the superficial and deep pineals. The great majority of the fibers bore a large number of varicosities. More NPY-fibers were found in the pineal glands of gerbils than hamsters. NPY fibers were distributed evenly throughout the pineal glands of the gerbil, but they were more often located in the central region of the superficial pineal of the hamster. For the pineal grafts, superficial pineals from neonatal and 4-week-old hamsters were transplanted to different sites in the third cerebral ventricle (infundibular recess, posterior third ventricle) or beneath the renal capsule. The pineal grafts from 4-week-old donors appeared to undergo severe degeneration and eventually disappeared. The pineal grafts from neonatal hamsters, however, successfully survived and became well integrated into their new locations. Abundant TH-and NPY-fibers in the host brain were found surrounding the pineal grafts placed in the third cerebral ventricle, but were only rarely seen entering the parenchyma of the grafts. A few TH-fibers were demonstrated in the renal grafts 4 weeks after transplantation. These studies describe the postnatal development of the innervation of the pineal glands in situ by TH-and NPY-nerve fibers, and demonstrate a lack of reinnervation of cerebroventricular pineal grafts by TH and NPY fibers from adjacent host brain.Portions of the results of this paper were previously reported in abstract form at the 1990 Meeting of The American Association of Anatomists (Anat Rec 226:57A)  相似文献   

4.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

5.
The sympathetic nerve fibers originating from the superior cervical ganglia and supplying the pineal gland play the most important role in the control of the pineal activity in mammals. NPY and CPON are also present in the majority of the pinealopetal sympathetic neurons. In this study, immunohistochemical techniques were used to demonstrate the existence and coexistence of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH) as well as NPY and CPON in the nerve fibers supplying the chinchilla pineal gland. Ten two-year-old female chinchillas housed in natural light conditions were used in the study. The pineals were fixed by perfusion. ABC immunohistochemical technique and immunofluorescence labelling method were employed. TH-immunoreactive (TH-IR) varicose nerve fibers were observed in the pineal gland as well as in the posterior commissural area. Within the chinchilla pineal gland, TH-IR nerve fibers were located in the capsule and connective tissue septa. Numerous varicose TH-IR branches penetrated into the parenchyma and formed a network showing the highest density in the proximal region of the gland. In the central and distal parts of the pineal parenchyma, a subtle network, composed of thin varicose nerve branches, was observed. Double immunostaining revealed that the majority of TH-IR nerve fibers was positive for DbetaH or NPY. TH- and DbetaH-positive neuron-like cells were observed in the proximal region of the gland. The pattern of pineal innervation immunoreactive to CPON was similar to the innervation containing NPY, TH and DbetaH. The chinchilla intrapineal innervation containing TH, DbetaH, NPY and CPON is characterized by the higher density in the proximal part of the gland than in the middle and distal ones. The specific feature of the chinchilla pineal is also the presence of single TH/DbetaH-immunoreactive neuron-like cells in the proximal part of the gland.  相似文献   

6.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

7.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

8.
Morphometric analytical procedures were employed to study the pineal gland of the Mongolian gerbil following superior cervical ganglionectomy (SCGX). The purpose of this study was to define the effects of sympathetic denervation on the morphology of the gland at two time periods, 0500 and 1900 h (one hour before lights-on and lights-off, respectively). Fluorescence histochemistry was employed to determine catecholamine and indoleamine content in intact and denervated pineal glands. After SCGX, the pinealocytes decrease in size, concretions are prevented from forming, and the yellow fluorescence in the gland is lost. Following denervation a depression in the volume of most of the pinealocyte organelles, i.e., SER, RER/ribosomes, free cytoplasm, mitochondria and presumptive secretory vesicles, was also observed. However, synaptic ribbons increased in volume in the gerbils that had been killed at 1900 h. It appears that the sympathetic innervation to the pineal gland is a requirement for the presumptive secretory activity of the pinealocytes.  相似文献   

9.
The present immunocytochemical study provides evidence of a previously unrecognized, rich, γ-aminobutyric acid (GABA)-ergic innervation of the pineal organ in the dogfish (Scyliorhinus canicula). In this elasmobranch, the pineal primordium is initially detected at embryonic stage 24 and grows to form a long pineal tube by stage 28. Glutamic acid decarboxylase (GAD)-immunoreactive (-ir) fibers were first observed at stage 26, and by stage 28, thin GAD-ir fibers were detectable at the base of the pineal neuroepithelium. In pre-hatchling embryos, most fibers gave rise to GAD-ir boutons that were localized in the basal region of the neuroepithelium, although a smaller number of labeled terminals ascended to the pineal lumen. A few pale GAD-ir perikarya were observed within the pineal organ of stage 29 embryos, but GAD-ir perikarya were not observed at other developing stages or in adults. In contrast, GABA immunocytochemistry revealed the presence of GABAergic perikarya and fibers in the pineal organ of late stage embryos and adults. Although high densities of GABAergic cells were observed in the paracommissural pretectum, posterior tubercle, and tegmentum of dogfish embryos (regions previously demonstrated to contain pinealopetal cells), the presence of GABA-ir perikarya in the pineal organ strongly suggests that the rich GABAergic innervation of the elasmobranch pineal organ is intrinsic. This contrasts with the central origin of GABAergic fibers in the pineal gland of some mammals. This work was supported by the Spanish Education and Science Ministry and FEDER (BXX2000-0453-C02 and BFU2004-03313/BF1), the Xunta de Galicia (PGIDT99BIO20002), and NIH/NIDCD awards R01 DC01705 and P01 DC01837 (to G.R.H.).  相似文献   

10.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

11.
Nerve fibers connecting the brain with the pineal gland of the Mongolian gerbil (central pinealopetal fibers) were investigated by means of light and electron microscopy. Several myelinated fibers penetrate from the brain into the deep pineal gland, extend further into the pineal stalk and continue to the superficial portion of the pineal gland. In the centripetal direction these fibers were traced to the stria medullaris and to the habenular nuclei, where they turned laterad and then occupied a position immediately ventral to the optic tract. As shown in electron micrographs, lesions of the habenular area led to degeneration of myelinated fibers and nerve boutons in the deep pineal gland, the pineal stalk and the superficial pineal gland. Only boutons containing clear transmitter vesicles (devoid of a dense core) were observed to degenerate after the habenular lesions. On the other hand, removal of the superior cervical ganglia resulted in degeneration of boutons containing small (40 to 60 nm in diameter) dense-core vesicles. Several of the nerve fibers that penetrate into the deep pineal directly from the brain (central fibers) exhibited a positive reaction for acetylcholinesterase (AChE). AChE-positive perikarya were located in the projections of the stria medullaris, the lateral portions of the deep pineal, the area of the posterior commissure, and the periventricular gray of the mesencephalon. Such perikarya were found neither in the pineal stalk nor in the superficial pineal gland. These results present anatomical evidence that the pineal organ of the Mongolian gerbil receives multiple nervous inputs mediated by peripheral autonomic (i.e., sympathetic) nerve fibers, on the one hand, and by central fibers, on the other.  相似文献   

12.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

13.
Summary The distribution of tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive(IR) nerve fibers in the pineal complex was investigated in untreated rats and rats following bilateral removal of the superior cervical ganglia. In normal animals, a large number of TH- and NPY-IR nerve fibers were present in the pineal capsule, the perivascular spaces, and intraparenchymally between the pinealocytes throughout the superficial pineal and deep pineal gland. A small number of TH-IR and NPY-IR nerve fibers were found in the posterior and habenular commissures, a few fibers penetrating from the commissures into the deep pineal gland. To elucidate the origin of these fibers, the superior cervical ganglion was removed bilaterally in 10 animals, and the pineal complex was examined immunohistochemically. Two weeks after the ganglionectomy, the TH-IR and NPY-IR nerve fibers in the superficial pineal gland had almost completely disappeared. On the other hand, in the deep pineal and the pineal stalk, the TH-IR and NPY-IR fibers were still present after ganglionectomy. These data show that the deep pineal gland and the pineal stalk possess an extrasympathetic innervation by TH-IR and NPY-IR fibers. It is suggested that the extrasympathetic TH-IR and NPY-IR nerve fibers innervating the deep pineal and the pineal stalk originate from the brain.  相似文献   

14.
Summary Distribution and number of acetylcholinesterase-positive neurons were studied in the Japanese quail and the domestic fowl during the post-hatching period by means of the acetylcholinesterase method. For comparison, the development of the catecholamine-containing (sympathetic) pinealopetal fibers of the domestic fowl was demonstrated with the use of the glyoxylic acid method. The number of acetylcholinesterase-positive ganglion cells in the pineal organs of both avian species decreased rapidly after hatching, with a concentration of these elements in the basal portion (stalk) of the pineal organ.In 3-day-old chickens, perivascular catecholamine-containing nerve fibers penetrate the antero-lateral walls of the pineal organ and are found exclusively in the interfollicular and perivascular tissues. In 13-day-old and adult fowl, these fibers increase in number and terminate not only in the interfollicular space but also in the neuroepithelial parenchyma of the pineal body.The ontogenetic regression of the sensory structures paralleled by an expanding sympathetic innervation in the pineal organ of a galliform species resembles somewhat the process of phylogenetic transformation leading from pineal sense organs to pineal glands.This work was supported by a grant (No. 56480080) from the Ministry of Education, Science and Culture of Japan.Fellow of the Alexander von Humboldt Foundation (1982).  相似文献   

15.
In contrast to the majority of sympathetic neurons which are noradrenergic, the sympathetic neurons which innervate sweat glands are cholinergic. Previous studies have demonstrated that during development the sweat gland innervation initially contains catecholamines which are lost as cholinergic function appears. The neurotransmitter phenotype of sweat gland neurons further differs from the majority in that they contain vasoactive intestinal peptide (VIP) rather than neuropeptide Y (NPY). In the experiments described here, we addressed the question of whether sympathetic targets influence the neurotransmitter-related properties of the neurons which innervate them; in particular, do sweat glands play a role in reducing the expression of noradrenergic properties and inducing the expression of cholinergic properties and VIP in sympathetic neurons? This was accomplished by cotransplanting to the anterior chamber of the eye of host rats the superior cervical ganglia (SCG) which contains neurons that normally innervate targets other than the sweat glands and differentiate noradrenergically and footpad tissue from neonatal rats. Sweat glands developed in the transplanted footpad tissue and became innervated by the cotransplanted SCG neurons. The transplanted neurons and sweat gland innervation initially exhibited catecholamine histofluorescence which declined with further development in the anterior chamber. After 4 weeks, choline acetyltransferase (ChAT) and VIP immunoreactivities were evident. These observations suggest that as in the neurons which innervate the glands in situ, noradrenergic properties were suppressed and cholinergic function was induced in the neurons which innervated the glands in oculo. To distinguish a specific influence of the sweat glands on transmitter choice, SCG were also cotransplanted with the pineal gland, a normal target of the ganglion. Neurons cotransplanted with the pineal gland continued to exhibit catecholamine histofluorescence and contained NPY immunoreactivity. At least some neurons in SCG/pineal cotransplants, however, developed ChAT immunoreactivity. The target-appropriate expression of catecholamines and peptides in these experiments is consistent with the hypothesis that some transmitter properties are influenced by target tissues. The indiscriminant expression of ChAT, however, suggests that at least in oculo, additional factors can influence transmitter choice.  相似文献   

16.
Application of the histochemical method for testing acetylcholinesterase (AChE, EC 3.1.1.7) showed the presence of AChE-positive nerve fibers in the deep pineal gland and the pineal stalk but not in the superficial part of adult albino rats. These findings may indirectly support the existence of the potentially cholinergic innervation of at least some of the rat pinealocytes present in these parts of the gland and augment the evidence of the heterogeneity of the rat pinealocytes. It is possible that cholinergic neurons in the medial habenular nuclei or in the parasympathetic sphenopalatine ganglion may be a source of these AChE-positive fibres. The examination was performed at the light microscope level.  相似文献   

17.
Summary Various types of synaptic formations on pinealocytes and pineal neurons were found in the pineal body of Macaca fuscata. Axo-somatic synapses of the Gray type-II category were detected on the pinealocyte cell body. Gap junctions and ribbon synapses were observed between adjacent pinealocytes. About 70 nerve-cell bodies were detected in one half of the whole pineal body bisected midsagittally. They were localized exclusively deep in the central part. When examined electron-microscopically, they were found to receive ribbon-synapse-like contacts from pinealocytic processes. They also received synaptic contacts of the Gray type-I category on their dendrites, and those of the Gray type-II category on their cell bodies from nerve terminals of unknown origin. All these synapse-forming axon terminals contained small clear vesicles. Thus, the pineal neurons of the monkey, at least in part, are suggested to be derived from the pineal ganglion cells in the lower vertebrates and not from the postganglionic parasympathetic neurons. The functional significance of these observations is discussed in relation to the innervation of the pineal body of the monkey.  相似文献   

18.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

19.
The significance of autonomic nerves reaching the pincal organ was already investigated in connection to the innervation of pinealocytes and mediating light information from the retina for periodic melatonin secretion. In earlier works we found that some autonomic nerve fibers are not secretomotor but terminate on arteriolar smooth muscle cells in the pineal organ of the mink (Mustela vison). Studying in serial sections the pineal organ of the mink and 15 other mammalian species in the present work, we investigated whether similar axons of vasomotor-type are generally present in the wall of pineal vessels, further, whether they reach the organ via the conarian nerves or via periarterial plexuses. In all species investigated, axons of perivasal nerve bundles were found to form terminal enlargements on the smooth muscle layer of pineal arterioles. The neuromuscular endings contain several synaptic and some granular vesicles. Axon terminals are also present around pineal veins. In serial sections, we found that the so-called conarian autonomic nerves reach the pineal organ alongside pineal veins draining into the great internal cerebral vein. Similar nerves present near arteries of the arachnoid enter the pineal meningeal capsule and septa by arterioles, both perivenous and periarterial nerves form terminals of vasomotor-type. The arteriomotor and venomotor regulation of the tone of the vessels of the pineal organ may serve the vascular support for circadian and circannual periodic changes in metabolic activity of the pineal tissue.  相似文献   

20.
1. The pineal gland is regulated primarily by photoperiodic information attaining the organ through a multisynaptic pathway initiated in the retina and the retinohypothalamic tract. 2. Norepinephrine (NE) released from superior cervical ganglion (SCG) neurons that provide sympathetic innervation to the pineal acts through alpha1- and beta 1- adrenoceptors to stimulate melatonin synthesis and release. 3. The increase in cyclic AMP mediated by beta 1-adrenergic activation is potentiated by the increase in Ca2+ flux, inositol phospholipid turnover, and prostaglandin and leukotriene synthesis produced by alpha 1-adrenergic activation. 4. Central pinealopetal connections may also participate in pineal control mechanisms; transmitters and modulators in these pathways include several neuropeptides, amino acids such as gamma-aminobutyric acid (GABA) and glutamate, and biogenic amines such as serotonin, acetylcholine, and dopamine. 5. Secondary regulatory signals for pineal secretory activity are several hormones that act on receptors sites on pineal cells or at any stage of the neuronal pinealopetal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号