首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

2.
—The conversion of [l-14C]palmitic acid to [1-14C]hexadecanol has been demonstrated with a cell-free system from developing rat brain. ATP, Coenzyme A and Mg2+ were required for the activity. Fatty aldehyde was found to be an intermediate in this reaction. The conversion of fatty acid to fatty alcohol was mainly localized in the microsomal fraction and the formation of hexadecanol showed absolute specificity towards NADPH while fatty aldehyde was formed even in the absence of exogenous reduced pyridine nucleotides. The brain microsomes showed maximal activity with stearic acid and the activities with palmitic and oleic acids were 65% and 38% respectively of that with stearic acid. This enzymic reduction increased with age and showed a maximum in the 15-day old rat brain.  相似文献   

3.
—The incorporation of [1-14C]acetate into unesterified fatty acids and into the fatty acids of neutral glycerides and of phospholipids has been measured in rat cerebral cortex in vivo. The most rapid incorporation is seen in the unesterified fatty acids which have a turnover time of 5-6 min. It is suggested that unesterified fatty acids are precursors to neutral glycerides and phospholipids rather than being derived from them by lipase activity.  相似文献   

4.
Abstract— The effects of carbamylcholine on incorporation of [1-14C]arachidonate into the glycerolipids in mouse brain synaptosome-rich and microsomal fractions were examined at 1, 3 and 10 min after intracerebral injection of the labeled precursor. When carbamylcholine was included with the labeled arachidonate, there was a decrease in the proportion of labeled fatty acid incorporated into the phospholipids. Among the phospholipids in the synaptosome-rich fraction, a decrease in incorporation of radioactivity into diacyl-glycerophosphoinositols and diacyl-glycerophosphocholines was observed at 1 and 3 min after injection. A decrease in labeling of diacyl-glycerophosphoethanolamines and diacyl-glycerophosphocholines in the microsomal fraction was observed at 3 and 10 min after injection. The decrease in phospholipid labeling was marked by an increase in labeling of diacylglycerols which was observed initially in the synaptosome-rich fraction, but also in the microsomal fraction at later time periods. Other lipid changes included an increase in triacylglycerol labeling which was found in the synaptosome-rich fraction and an increase in phosphatidic acid labeling which was found in the microsomal fraction. Results of the in vivo study have demonstrated changes in brain lipid metabolism during carbamylcholine stimulation. Furthermore, these changes appear to be initiated mainly in the synaptosome-rich fraction.  相似文献   

5.
—The incorporation of an orally administered mixture of [9,10-3H2joleic acid and [1-14C]linoleic acid into the brain and spinal cord lipids was maximal after 24 h compared with 4 h for extraneural tissue. In the latter, both acids were utilized equally well for triglyceride biosynthesis, but linoleate entered phosphatidylcholine more rapidly than oleate. Oleic acid was preferentially incorporated into newly synthesized cholesterol esters although 4 h after dosing most cholesterol esters present in serum were formed preferentially from linoleate presumably by the action of lecithin-cholesterol acyl transferase. In neural tissue, a considerable amount of [1-14C]linoleate was metabolized to higher polyunsaturated fatty acids, whereas in the case of oleate, 90 per cent of the tritium activity remained in monoenic acids at all time periods studied. Both acids were initially incorporated most rapidly into the lecithin fraction of brain and spinal cord, but after 7 days diacyl phosphatidylethanolamine had the highest specific activity. These data are consistent with the view that the uptake of labelled fatty acids by the brain takes place principally as free acids but that some uptake of esterified forms, probably largely as phosphatidylcholine, also occurs. The low linoleate content of the brain and probably also of cerebrospinal fluid cannot be explained on the basis of a selective restriction on the uptake of this lipid from plasma.  相似文献   

6.
Abstract— Incorporation of dl -[1-14C]leucine into proteins of the cerebral cortex of the rat was measured during spreading cortical depression (CSD) evoked by a single topical application of 25% (w/v) KCI. Maximal inhibition (42 per cent) of the rate of incorporation occurred 1 hr after application of KCI. Spreading depression of 2–3 hr duration was associated with 22 per cent and 13 per cent decreases, respectively, of incorporation of labelled leucine. Specific activity of the free pool leucine was not decreased during CSD but appeared to be higher than controls at 20 min after initiation of CSD. The specific activity of the total free pool amino acids was also increased at 10, 20, 60 and 120 min after application of KCI.
The inhibitory effect of CSD on incorporation of leucine into proteins was uniformly distributed among the crude mitochondrial, microsomal and soluble subcellular fractions from brains of adult animals, while in fractions from 25-day old animals there appeared to be relatively more inhibition in the crude mitochondrial fraction.  相似文献   

7.
—Intracerebrally administered [14C]N-acetyl neuraminic acid was incorporated into brain glycoproteins and gangliosides. Incorporation into both classes of compounds was markedly inhibited by acetoxycycloheximide but incorporation into the soluble glycoproteins of the nerve-ending fraction was inhibited least of all. In contrast to glucosamine and fucose, a relatively small proportion of the injected [14C]NANA was incorporated.  相似文献   

8.
9.
10.
Abstract— Radioactive acetylcholine ([14C]ACh) that is taken up by rat cerebral cortex slices, incubated aerobically in a physiological saline-glucose paraoxon-[14C]ACh medium, apparently by a passive diffusion process at concentrations > 1 mm consists essentially of two forms, a readily exchangeable and releaseable or mobile form, and a bound or retained form, poorly (or not) exchangeable. The quantity of retained ACh consists of a considerable fraction of that taken up amounting to 54% with external 0.1 mm -[14C]ACh and about constant, 27%, for the range 5-50mm -[14C]ACh. All its ACh is released on homogenization with 0.1 n -perchloric acid or on tissue disintegration in distilled water. The cerebral uptake of ACh differs basically from that of urea as there is no retention of the latter following its uptake. Cerebral cortex slices are superior to those of cerebellar cortex, subcortical white matter, kidney cortex, liver and spleen in taking up and retaining [14C]ACh. Deprivation in the incubation media of glucose or Na+ or Ca2+. or the presence of dinitrophenol, whilst causing little change in ACh uptake, induces considerable changes in swelling and ACh retention; the greater the amount of swelling the smaller is that of retention. It seems that the latter is segregated in compartments characterized by a low permeability to exogenous ACh. About half of it is independent of changes in incubation conditions whilst the other half enters the compartment by an Na+, Ca2+ and energy-dependent process. At least part of the retention is neuronal as it is diminished by protovera-trine, the diminution being blocked by tetrodotoxin. Mobile ACh (i.e. total uptake minus retained ACh) is largely unaffected by protoveratrine, ouabain, etc. It seems that the retained ACh is directly proportional to the amount of mobile ACh minus the amount that enters with swelling. If the latter is largely glial in location, then the retained ACh is simply proportional to the mobile neuronal ACh. Suggestions are made as to the location of the retained ACh in the brain cells and to the processes involved in its segregation there. Release of retained ACh occurs on change of the Na+ gradient. Atropine and d-tubocurarine also diminish the amount of retained ACh but the percentage diminution falls with increase of the concentration of exogenous ACh.  相似文献   

11.
12.
Abstract— [14C]Nipecotic acid was accumulated in isolated desheathed rat dorsal root ganglia by a saturable process with K m= 48.8 μ m and V max= 2.2 nmol/g/min. The concentration of l -2.4-diamino-butyric acid required to inhibit the uptake of nipecotic acid by 50% was three times the concentration of β-alanine required to do the same. Light microscopic autoradiography indicated that the sites of uptake of [14C]nipecotic acid were principally confined to satellite glial cells. It is concluded that nipecotic acid is transported by the GABA uptake system in glia but that it has less affinity for this system than GABA.  相似文献   

13.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

14.
—Ribosomes isolated from the brains of rats treated with morphine in vivo were less active in promoting the incorporation of [14C]leucine into protein than ribosomes isolated from untreated rats. This inhibitory phenomenon was studied in relation to dose of morphine, time after drug administration and the pharmacological responses of hypothermia and analgesia. The inhibition of [14C]leucine incorporation into brain proteins in vitro was transient after a single injection of morphine and dose-dependent, and related to the hypothermic response, but not prevented by keeping the rats at an ambient temperature which prevented hypothermia. The incorporation of [14C]leucine into protein by liver ribosomes was also inhibited in preparations from morphine treated rats.  相似文献   

15.
—(1) The rate of incorporation in vitro of [14C]glycine into adult rat peripheral nerve protein was studied and found to be linear up to a concentration of 4.5 μc/ml. It was also linear with time of incubation up to at least 6 hr. (2) Anaerobiosis, potassium cyanide, dinitrophenol and diphtheria toxin inhibited the incorporation of [14C]glycine into protein, in a manner comparable to other tissues.  相似文献   

16.
By the use of quantitative thin-layer chromatography, it has been shown that triethyltin sulphate 7.5 mglkg body wt. reduces the incorporation of 88P1 into rat brain phospholipids, especially lecithin, when the animals are kept at an environmental temperature of 20°. Triethyltin at this dose also reduces the body temperature by approximately 6°. When the body temperature of the triethyltin-treated animals is maintained at a normal level by placing them in an environmental temperature of 33°, no significant reduction in the incorporation of 32P1 into any of the phospholipids is observed.  相似文献   

17.
Trans-unsaturated fatty acids, geometrical isomers of naturally occurring cis-acids, are dietary components and are incorporated into complex lipids of many tissues. There is little information about incorporation into brain and effects on CNS functions. In our experiments, mixtures of [l-14C]-elaidic acid and [9,10-3H]oleic were injected intragastrically into a total of 34 rats at 6, 12 and 16 days of age. Animals were killed 4, 8, 24, 48 and 96 h after administration and brain and liver lipids analyzed. With all ages examined, about 0.02–0.22% of the administered radioactivity from each fatty acid was found in brain lipids with incorporation increasing with time after administration. Phospholipids accounted for 60–85% of the total label from both fatty acids; of this phospholipid label, 40–50%, of the 14C was in unaltered irans-monoene. Up to 22% of the total 14C label recovered from brain was in cholesterol. By contrast to brain, labeling of liver lipid was much greater and was highest at 4 h after administration; there was proportionally less 14C or 3H label in palmitate and cholesterol compared to brain. Thus, intact trans-fatty acid, elaidic acid, was incorporated into developing brain, but at slower rates than into liver. These studies establish that the developing central nervous system does not exclude dietary trans-acids.  相似文献   

18.
—During anoxia induced by the administration of potassium cyanide, [U-14C]glucose was injected intraperitoneally into adult mice and they were decapitated at 5, 15 and 30 min after the injection. After freeze-drying in vacuo, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, cerebellar hemisphere, caudate nucleus, thalamus, hypothalamus and medulla oblongata were investigated (by macroautoradiography and GLC separation) and compared with those obtained under normal conditions. (1) During anoxia, autoradiographical densities in the thalamus and medulla oblongata were higher than that in the cerebral neocortex and caudate nucleus. (2) Among specific radioactivities (d.p.m./μmol) of free amino acids, alanine gave the highest value during anoxia, except in the cerebellar hemisphere and hypothalamus at 5 min and the medulla oblongata at 30 min. (3) During anoxia, the specific radioactivities of alanine and glycine in each brain region did not significantly decrease at 15 and 30 min compared with those under normal conditions. During anoxia, the specific radioactivity of glutamate + glutamine in the cerebellar hemisphere and hypothalamus did not significantly decrease compared with the normal conditions, while that of GABA, aspartate + asparagine and glutamate + glutamine in the cerebral neocortex, caudate nucleus, thalamus and medulla oblongata showed an increase. (4) The percentage decrease of glutamate + glutamine and aspartate + asparagine at 5 and 15 min was highly significant in the cerebral neocortex and caudate nucleus.  相似文献   

19.
20.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号