首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The effects of carbamylcholine on incorporation of [1-14C]arachidonate into the glycerolipids in mouse brain synaptosome-rich and microsomal fractions were examined at 1, 3 and 10 min after intracerebral injection of the labeled precursor. When carbamylcholine was included with the labeled arachidonate, there was a decrease in the proportion of labeled fatty acid incorporated into the phospholipids. Among the phospholipids in the synaptosome-rich fraction, a decrease in incorporation of radioactivity into diacyl-glycerophosphoinositols and diacyl-glycerophosphocholines was observed at 1 and 3 min after injection. A decrease in labeling of diacyl-glycerophosphoethanolamines and diacyl-glycerophosphocholines in the microsomal fraction was observed at 3 and 10 min after injection. The decrease in phospholipid labeling was marked by an increase in labeling of diacylglycerols which was observed initially in the synaptosome-rich fraction, but also in the microsomal fraction at later time periods. Other lipid changes included an increase in triacylglycerol labeling which was found in the synaptosome-rich fraction and an increase in phosphatidic acid labeling which was found in the microsomal fraction. Results of the in vivo study have demonstrated changes in brain lipid metabolism during carbamylcholine stimulation. Furthermore, these changes appear to be initiated mainly in the synaptosome-rich fraction.  相似文献   

2.
Radioactivity within individual brain compartments was determined from 5 min to 44 h after intravenous injection of [14C]palmitate into awake Fischer-344 rats, aged 21 days or 3 months. Total radioactivity peaked broadly between 15 min and 1 h after injection, declined rapidly between 1 and 2 h, and then more slowly. In 3-month-old rats, the lipid and protein brain fractions were maximally labeled within 15 min after [14C]palmitate injection, then retained approximately constant label for up to 2 days. Radioactivity in the aqueous brain fraction comprised mainly radioactive glutamate and glutamine, and peaked at 45 min, when it comprised 48% of total brain radioactivity, then decreased to 27% of the total at 4 h, 15% at 20 h, and 10% at 44 h. Percent distribution of radioactivity within the different brain compartments, 4 h after intravenous injection of [14C]palmitate, was similar in 21-day-old and 3-month-old rats, despite higher net brain uptake in the younger animals. The results indicate that about 50% of plasma [14C]palmitate that enters the brain of adult rats is incorporated rapidly into stable protein and lipid compartments. The remaining [14C]palmitate enters the aqueous fraction after beta-oxidation, and is slowly lost. At 4 h after injection, 73% of brain radioactivity is within the stable brain compartments; this fraction increases to 86% by 20 h.  相似文献   

3.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

4.
Abstract: Awake adult male rats were infused intravenously with [3H]arachidonic acid for 5 min, with or without prior administration of an M1 cholinergic agonist, arecoline (15 mg/kg i.p.). Methylatropine was also administered (4 mg/kg s.c.) to control and arecoline-treated animals. At 15 min postinfusion, the animals were killed, brains were removed and frozen, and subcellular fractions were obtained from homogenates of whole brain. Total radioactivity and radioactivity in various lipid classes were determined for each fraction following normalization for exposure by use of a unidirectional incorporation coefficient, k brain. In control animals, incorporation was greatest in synaptosomal and microsomal fractions, accounting for 50 and 30% of total label incorporated into membrane lipids, respectively. Arecoline increased incorporation in these two fractions by up to 400% but did not increase incorporation into the myelin, mitochondrial, or cytosolic fractions. Of the incorporated radioactivity, 50–80% was in phospholipid in microsomal and synaptosomal fractions, indicating that phospholipid is the major lipid affected by cholinergic stimulation. These results demonstrate that plasma [3H]arachidonic acid is preferentially incorporated into phospholipids of synaptosomal and microsomal fractions of rat brain. Cholinergic stimulation increases incorporation into these fractions, likely by activation of phospholipase A2 and/or C in association with acyltransferase activity. Thus, intravenously infused radiolabeled arachidonic acid can be used to examine synapse-mediated changes in brain phospholipid metabolism in vivo.  相似文献   

5.
1. Ten-week old broiler females were force-fed (FF) for 3 days or 3 weeks. 2. Control livers were lighter in weight and contained less total lipid, neutral lipid and phospholipid than either FF group, which did not differ. 3. Radioactivity incorporated into liver neutral lipid fractions from 1-[14C]acetate injection was greater in birds FF 3 weeks than controls. Those FF 3 days were intermediate. In all groups, the triglyceride fraction contained 90-94% of isolated radioactivity, the cholesterol fraction 4-8% and the cholesterol ester fraction 1-2%. 4. Plasma lipids were elevated in the birds FF for 3 weeks, but not in those FF 3 days. After injection of 1-[14C]acetate, plasma lipid specific radioactivities were not different between the 3 groups at 20 and 60 min post injection, but were greater in the controls at 120 min.  相似文献   

6.
Abstract— Rats were exposed to 5 atmospheres absolute of oxygen, and [1-14C]acetate was injected into the jugular vein either before or at the onset of electroencephalogram-defined convulsions. Levels of 14C observed 2.2 min after the injection were reduced in the total lipids of brain and elevated in the blood of convulsed rats when compared to the nonconvulsed controls. These differences between convulsed and nonconvulsed animals were less pronounced when measured 15 and 60 min after injection. Convulsions did not change the amount of 14C incorporated into the total lipids of plasma during the 60 min period studied. Six fractions obtained from total lipid extracts of brain by TEAE-cellulose showed similar 14C distributions in convulsed and control animals. The results suggest that oxygen-induced convulsions cause an impaired utilization of systemically administered acetate for fatty acid incorporation into the lipids of brain.  相似文献   

7.
Abstract— Essential fatty acid deficiency initiated in rats prior to birth and continued for 140 days after birth affects the fatty acid composition of ethanolamine phosphoglyceride of brain subcellular fractions (myelin, microsomes, mitochondria and synaptosomes). It was confirmed that the fatty acid composition of the same phospholipid class differs considerably among the various subcellular fractions: myelin has the highest concentration of long-chain monoenes, while in the other fractions saturates and polyenes predominate. In EFA deficiency it was found that (1) trienes are elevated and tetraenes decreased in all fractions, (2) the triene/tetraene ratio, which is considered a biochemical index of essential fatty acid deficiency, is highest in myelin and lowest in the synaptosomal fraction, and (3) in all fractions there is a shift towards more unsaturated members of the same fatty acid family.  相似文献   

8.
The effects of an essential fatty acid deficient diet were investigated on the phospholipid fatty acids of several membrane fractions of the rat anterior pituitary, the secretion of which is known to be partly dependent on the membrane phospholipidic constituents. In standard dietary conditions, arachidonic acid (20:4n-6) and its elongation product, adrenic acid (22:4n-6), were the two main polyunsaturated fatty acids in all fractions studied. In rats deprived of EFA for 6 weeks after weaning, the levels of both 20:4n-6 and 22:4n-6 were not changed in microsomal + plasma membrane and nuclear fractions, whereas they were decreased in heavy mitochondrial and light mitochondrial fractions. The present data suggest a mechanism of compensation between membrane fractions which may preferentially preserve 20:4n-6 and 22:4n-6 in discrete membrane fractions.  相似文献   

9.
—Cerebroside in the brain is highly localized in myelin and has a relatively slow turnover rate. The aim of this study was to evaluate the true cerebroside biosynthetic activity under conditions in which the degradation and reutilization of brain lipids were as small as possible. The 3-week-old mice were decapitated at 0·5, 1, 2·5, 5 and 15 min after the intraperitoneal injection of labelled acetate and the incorporation of radioactivity into each lipid class was examined. Even at 0·5 min, a considerable amount of radioactivity was found in simple lipids, especially in the free fatty acid fraction, and in the course of time the radioactivity of complex lipids increased. On the other hand, the incorporation of radioactivity into cerebrosides was extremely small throughout the experimental period. Results indicated that the low radioactivity of cerebroside might be due to its high content of long-chain fatty acids which were weakly labelled. The radioactivity of the sphingosine moiety was also low. In short, one of the rate-limiting steps of cerebroside synthesis in brain might exist in long-chain fatty acid and sphingosine synthesis. In addition, the incorporation curves of each component of cerebroside were compared with each other and the difference of the incorporation pattern of non-hydroxy fatty acids of cerebroside was noted.  相似文献   

10.
Insulin-induced hypoglycemia in rats may lead to stimulated brain activity and if severe enough, they may develop a stupor-coma condition. In this study, the effects of insulin-induced hypoglycemia on brain phospholipid metabolism were examined in rats which were prior injected with 32Pi. Three hours after insulin injection (1 or 5 units/100 g body wt, i.p.), there was an increase (25%) in radioactivity of the lipid phase of cerebral cortex, but radioactivity in the cerebellum tended to decrease instead. Radioactivity in the aqueous phase of cortex was not altered after insulin injection, but that in the cerebellum was decreased by 30%. Differences were observed in labeling of individual phospholipids in response to the hypoglycemic treatment. A marked decrease in labelled phosphatidate was observed in the cerebellum from the hypoglycemic samples, but not in the cerebral cortex. In the cortex, hypoglycemic condition resulted in an increase in 32Pi uptake into the phospholipids. However, the differences in the amount of label among individual phospholipids suggest that phosphatidylinositol and phosphatidylcholine are turning over more rapidly than other phospholipids. The hypoglycemic rats also showed a 3-fold increase in the brain free fatty acid level, but the level of diacylglycerol was not changed. Results thus suggested a correlation between the free fatty acid release and the increased turnover of phosphatidylinositol and phosphatidylcholine during brain stimulation due to insulin-induced hypoglycemia.  相似文献   

11.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

12.
Wistar rats were injected with 2-14C-propionate in a dose of 30 mu Ci/100 g bw, 2 h after food intake. Two hours after isotope injection the rats were decapitated to determine specific radioactivity (SR) in liver and brain lipids, in liver phosphatidylcholine (PC) and its structural components. The label was incorporated in liver lipids in a far greater amount. In liver PC, SR appeared the highest in glycerin and less higher in the fraction of higher fatty acids. The least amount of the label from 2-14C-propionate was incorporated in choline. The fact of the label incorporation in choline was recorded for the first time.  相似文献   

13.
Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines.  相似文献   

14.
To ascertain the effects of bicuculline and of sodium valproate on the incorporation of glycerol into rat brain lipid, rats were divided into 5 groups: (a) controls; (b) treated with sodium valproate (400 mg/kg body wt); (c) treated with bicuculline (12.5 μmol/kg body wt); (d) treated with sodium valproate as in (b) + bicuculline as in (c); and (e) treated with bicuculline (25 μmol/kg body wt). Only rats of group (c) had seizures, which lasted until the end of the experiment. Each animal received 20 μCi of [2-3H]glycerol by intraventricular route and was sacrificed 12 min afterwards. Hippocampi and cerebella were taken and lipid extracted and separated by chromatography.

The type of treatment influenced very much the fate of injected, labeled glycerol. Indeed, total recovered radioactivity increased following either convulsions or the administration of valproate, whereas both treatments decreased the amount of radioactivity incorporated into lipid. These effects were more evident in cerebella than in hippocampi.

The distribution of radioactivity among lipid classes (diglyceride, triglyceride and total phospholipid) was also affected by seizures, which decreased the labeling ratio phospholipid/neutral lipid. The distribution of radioactivity among phospholipid classes was influenced by bicuculline (both at convulsant and non-convulsant doses) and these effects were sometimes antagonized by valproate. We conclude that some effects of bicuculline are exerted through the systemic modifications due to seizures and that other effects are probably connected to neuronal hyperfiring. The data reported in this paper are consistent with both mechanisms of action proposed for valproate, i.e. increased membrane permeability and modifications of GABAergic systems.  相似文献   


15.
The aim of this study was to assess the phospholipid distribution of radioiodinated 17-iodoheptadecanoic acid (IHDA), 15-(p-iodophenyl)pentadecanoic acid (p-IPPA) and 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPPA) under normoxic conditions and to compare these data with the fatty acid composition of the phospholipid classes. After simultaneous i.v. injection of the radioiodinated fatty acids (1-123-IHDA; 1-131-p-IPPA; 1-125 DMIPPA) in open-chest dogs seven myocardial biopsies were taken over 40 min (n = 26). After lipid extraction of the biopsies the organic phase was analyzed for both neutral and polar lipids by two different TLC systems. The following polar lipid fractions were analyzed: lysophopshatidylcholine (LPC), sphingomyelin (SPH), phosphatidy1choline (PC; lecithin), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG; cardiolipin) and neutral lipids. Fractions were counted in a gamma well counter and corrected for cross-over and recovery. Results of the polar phospholipids analysis showed that IHDA has the highest incorporation into the phospholipids. The IHDA was mainly incorporated into PI (45.6%) followed by PC (30.9%), PE (14.0%) and PS (5.6%). The p-IPPA was predominantly incorporated incorporated into PC (37.2%), followed by PS (20.1%) and PE (13.7%). In contrast to IHDA, incorporation of p-IPPA into PI was small (6.4%). The DMIPPA analogue was incorporated into phopsholipids to only a very small degree, compared to IHDA and p-IPPA. PS (27.4%) was the only considerable phospholipid fraction into which DMIPPA was incorporated.The results clearly demonstrated that these radioiodinated fatty acid analogues have entirely different patterns of phospholipid incorporation. Major resemblances have been found between the incorporation into phospholipids of IHDA and the phospholipid distribution of the natural counterpart: stearic acid. The p—IPPA phospholipid incorporation only partly resembles the phospholipid distribution of palmitic acid. DMIPPA is because of its modified structure, incorporated into phospholipids to a low extent, mainly into PS. (Mol Cell Biochem116: 79–87, 1992)  相似文献   

16.
[6-3H] Glucosamine was injected into rats and then they were submitted for 1 h to light (about 1100 lux) and sound, while their controls were kept in darkness. Two series of experiments were done: in one, the animals received the injection intracerebrally; in the other, the injection was intraperitoneal. In both series the ratios of specific radioactivities (c.p.m./μmol of NANA) in mitochondria1 gangliosidic fractions to those in synaptosomal gangliosidic fractions were higher for rats exposed to illumination and sound ?+ 74 per cent, P < 0·01 and + 49 per cent, P < 0·001 (in respectively, experiments with intracerebral and intraperitoneal injections) than for animals kept in dark. For animals iqjected intraperitoneally the specific radioactivity of the mitochondria1 gangliosidic fraction from rats exposed to light was higher (+ 11 per cent, P < 0.05) than that obtained from animals kept in dark. For synaptosomes the specific radioactivity of the gangliosidic fraction obtained from animals exposed to light was lower (?15 per cent, P < 0.01) than that obtained from animals kept in dark. In animals kept under the experimental conditions already described for more than 1 h the differences tended to disappear. No differences were observed between the two groups of rats in the amounts of radioactivity found in the brain.  相似文献   

17.
The in vitro incorporation of acetate 14C in platelets lipids was compared in control female rats (Gr. I) to rats treated for 4 days either by an oral contraceptive ethinyl oestradiol + lynestrenol (Gr. II), or by ethinyl oestradiol alone (Gr. III) or lynestrenol alone (Gr. IV). An increase of 43--45% in the incorporation of acetate could be observed in the two groups (II and III) which received ethinyl oestradiol, while the incorporation in group IV was similar to that of the controls. The lipid fractions of which the synthesis was the most considerably stimulated by the oestrogen treatment, were the neutral lipids as separated from the other lipids by TLC. In groups II and III the incorporation in cholesterol and cholesterol esters was increased by 8 fold and by 10 fold in the free fatty acid fraction. In these two groups, even in the phospholipid fractions PS + PI and PE, the radioactivity was significantly increased. The observed effect of the oral contraceptive studied here on platelet lipid synthesis in female rats, appears to be essentially due to the estrogens, since lynestrenol had only minimal effects in that respect.  相似文献   

18.
Abstract: Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in pentobarbital-anesthetized rats to maintain constant plasma specific activity for 1–10 min. At the end of infusion, animals were killed by microwave irradiation and analyzed for tracer specific activity and concentration in brain phospholipid, neutral lipid, and lipid precursor, i.e., unesterified arachidonate and arachidonoyl-CoA, pools. Tracer specific activity in brain unesterified arachidonate and arachidonoyl-CoA rose quickly ( t 1/2 < 1 min) to steady-state values that averaged <5% of plasma specific activity. Incorporation was rapid, as >85% of brain tracer was present in phospholipids at 1 min of infusion. The results demonstrate that unesterified arachidonate is rapidly taken up and incorporated in brain but that brain phospholipid precursor pools fail to equilibrate with plasma in short experiments. Low brain precursor specific activity may result from (a) dilution of label with unlabeled arachidonate from alternate sources or (b) precursor pool compartmentalization. The results suggest that arachidonate turnover in brain phospholipids is more rapid than previously assumed.  相似文献   

19.
Blood fatty acids are an important parameter for the synthesis of brain myelin as exogenous stearic acid is needed: after subcutaneous injection to 18-day-old mice this labelled stearic acid is transported into brain myelin and incorporated into its lipids. However the acid is partly metabolized in the brain by elongation (thus providing very long chain fatty acids, mainly lignoceric acid) or by degradation to acetate units (utilized for synthesis of medium chain fatty acids as palmitic acid, and cholesterol). These metabolites are further incorporated into myelin lipids. The myelin lipid radioactivity increases up to 3 days; most of the activity is found in phospholipids; their fatty acids are labelled in saturated as well as in polyunsaturated homologues but sphingolipids, especially cerebrosides, contain also large amounts of radioactivity (which is mainly found in very long chain fatty acids, almost all in lignoceric acid). The occurrence of unesterified fatty acids must be pointed out, these molecules unlike other lipids, are found in constant amount (expressed in radioactivity per mg myelin lipid).  相似文献   

20.
Abstract— Following intracerebral injection, [14C]palmitic acid was rapidly incorporated into a variety of brain lipids. After 12 hr, 78 per cent of the lipid radioactivity was in phospholipids, 15 per cent was in triacylglycerols, 1 per cent each was in free fatty acids and galactolipids, and the remainder was in other neutral glycerides. Over 65 per cent of the phospholipid radioactivity was found in the choline phosphoglycerides but this proportion decreased substantially with time. At later times, increasing portions of the radioactivity were present in the monounsaturated acyl groups and the alkenyl groups but no radioactivity was detected in cholesterol or polyunsaturated acyl groups. These results indicate that most of the extensive recycling of radioactivity took place without oxidative degradation of the palmitoyl groups. The relative rates of incorporation of radioactivity were compared at 12 hr after injection. The specific radioactivities of the serine, ethanolamine, and choline phosphoglycerides had ratios of 6:3:2 based on the palmitoyl group content and 1:2:4 based on their phosphorus content. The specific radioactivities of galactolipids with O -acyl groups were higher than the specific radioactivitiesof cerebrosides or cerebroside sulphates. A new solvent mixture for thin-layer chromatography of brain galactolipids was described (chloroform-acetone-methanol-water, 60:20:20:1, by vol.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号