首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The present study was undertaken to investigate the potentiation by p-chlorophenoxyisobutyrate (CPIB) of the antilipolytic effect of insulin in isolated adipocytes from rats fed a (1) sucrose diet, (2) glycerol-lard diet, or (3) chow diet. CPIB supplementation in the diet consistently resulted in decreased serum triglyceride levels in rats from the three dietary groups. The catecholamine-stimulated glycerol release was significantly depressed to a greater extent by insulin when the fat cells were obtained from rats given CPIB compared to those without drug treatment. The enhanced insulin sensitivity was, however, not accompanied by any changes in insulin binding to adipocytes. These two observations were found in cell preparations from rats fed any one of the diets, although differences among dietary groups could be detected. In an in vitro experiment, epinephrine-stimulated glycerol release was progressively inhibited by increasing concentrations of CPIB in the incubation medium. However, the antilipolytic response to an optimal concentration of insulin (100 muU/ml) was augmented in the presence of CPIB. Thus, it seems that CPIB can potentiate the action of insulin in inhibiting mobilization of free fatty acid from the adipose tissue, and the coordinated effect of both antilipolytic agents is important in lowering serum triglyceride concentration. The mechanism by which CPIB facilitates the effect of insulin is discussed.  相似文献   

4.
The mechanisms by which insulin inhibits catecholamine-induced lipolysis in fat cells are unknown. In this study the possible role of an interaction between insulin and the adrenoceptors on human fat cells was investigated. Insulin inhibited, in a dose-dependent fashion, the specific binding of hydrophobic as well as hydrophilic nonselective beta-receptor radioligands but had no effect on the binding of alpha 2-selective radioligands. The results of saturation experiments and competition-inhibition experiments under both equilibrium conditions and nonequilibrium conditions revealed that insulin reduced the total number of beta-adrenergic binding sites (maximum effect 25%) without changing the beta-adrenoceptor affinity. This insulin effect was rapid and reversible; one-third of the effect occurred within 1 min of incubation and it was completely reversed within 30 min after withdrawal of insulin. It could be mimicked by a polyclonal rabbit insulin receptor antibody but not by insulin mimickers acting distal to the initial interaction between the hormone and its specific insulin-receptor binding site. The beta-adrenoceptor binding to a plasma membrane-enriched fraction decreased at the same time as it increased to a microsomal enriched fraction after insulin treatment, indicating a redistribution of beta-adrenoceptors in the cell. In lipolysis experiments performed under conditions like those in the binding experiments, insulin inhibited the rate of lipolysis with a lag period of 3 min. Furthermore, the hormone caused a dose-dependent maximum 10-fold shift to the right of the dose-response curve for isoprenaline-induced lipolysis without changing the amplitude of the curve. This effect of insulin was specific for the beta-adrenergic receptors system, since insulin markedly decreased the amplitude of the dose-response curve for parathyroid hormone-induced lipolysis. In addition, the effect of insulin on isoprenaline-induced lipolysis could be mimicked by long-lasting fractional inactivation of the beta-adrenoceptors. The dose-response relationships for the inhibitory effects of insulin on beta-adrenoceptor binding and the lipolytic sensitivity to isoprenaline were almost identical. Half-maximum and maximum effects occurred at about 5 and 100 microunits/ml of insulin, respectively. In conclusion, the exposure of human fat cells to physiological insulin doses is followed by a rapid and dose-dependent translocation of beta-adrenoceptors from the exterior to the interior of the cell and a subsequent dose-dependent decrease in the lipolytic sensitivity to beta-adrenergic agonists, without a change in maximum lipolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
7.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

8.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

9.
Okadaic acid was found to induce concentration- and time-dependent lipolysis in rat fat cells in the absence of lipolytic hormones, but it did not significantly increase the total hormone-sensitive lipase (HSL) activity in these fat cells, the activity of HSL extracted from fat layer and that of HSL in the supernatant of homogenized fat cells. Western blotting of fat cell homogenate fractions with an antiserum raised against synthetic peptide derived from rat HSL showed that HSL protein shifted from the supernatant to the fat layer in response to okadaic acid, which increased the HSL protein content on the fat layer and concomitantly reduced that of the supernatant, concentration- and time-dependently. Sonication of the fat cells abolished their responsiveness to okadaic acid. The lipolytic action of okadaic acid was examined and its site was identified using a cell-free system comprising lipid droplets isolated from rat fat cells and HSL. Okadaic acid induced lipolysis in this cell-free system and sonication of the lipid droplets caused disappearance of lipolytic action of okadaic acid. Okadaic acid failed to stimulate lipolysis in a cell-free system comprising HSL and artificial lipid droplets (trioleoylglycerol emulsified with gum arabic) instead of lipid droplets isolated from rat fat cells. These results suggest that okadaic acid does not increase the catalytic activity of HSL but induces translocation of HSL to the lipid droplets isolated from rat fat cells. The site of the lipolytic action of okadaic acid in relation to the interaction between HSL and lipid droplet is discussed.  相似文献   

10.
Dibucaine at 0.1 and 0.25 mM markedly inhibited epinephrine-stimulated lipolysis in rat epididymal fat cells invitro but did not inhibit protein kinase activity. At 1.0 mM, dibucaine half-maximally stimulated protein kinase of fat cells under basal conditions but did not stimulate lipolysis. It is concluded that dibucaine inhibits lipolysis by a mechanism not involving inhibition of protein kinase.  相似文献   

11.
The influence of lactate on human adipocytes lipolysis and the possible relationship between lactate-induced metabolic effects and beta-adrenoceptor binding sites were investigated. beta-sites were identified in membranes with (125I)-cyanopindolol and in intact cells with (125I)-cyanopindolol and (3H)-CGP 12177. Lactate reduced isoproterenol-induced lipolysis in a dose-response fashion and such inhibition became significant only at 16 mmol/l lactate. Exposure of human fat cells to 16 mmol/l lactate significantly reduced beta-adrenoceptors density on crude membranes. When the binding assay was performed on intact cells using (125I)-cyanopindolol at 37 degrees C, the radioligand identified the same number of receptors, regardless of the presence of lactate in the preincubation medium. When (3H)-CGP 12177 was used, it bound to about 35% less receptors in lactate pre-treated cells than in control. Seemingly, at 37 degrees C, because of its lipophilicity, (125I)-cyanopindolol can cross the plasma membrane and bind to intracellular sites whereas, (3H)-CGP 1277, due to its hydrophilicity, identifies surface receptors only. Thus, the present in vitro study provides evidence that high levels of lactate, similar to the concentrations usually achieved in overt lactic acidosis, are able per se to inhibit human lipolysis and to redistribute beta-adrenoceptors from cell surface to a domain not accessible to hydrophilic ligands.  相似文献   

12.
13.
14.

Objective:

Assessment of antilipolytic insulin action is important in obesity research, but extensive isotopic tracer studies are not always feasible. We evaluated whether an index of antilipolytic insulin action could be derived from readily available insulin and glycerol concentrations obtained during clamps or oral glucose tolerance tests (OGTT).

Design and Methods:

We evaluated data collected from 29 subjects who had undergone a 3‐stage hyperinsulinemic‐euglycemic clamp (4, 8, and 40 mU/m2/min) with infusion of [2H5]glycerol to calculate the glycerol rate of appearance (GLYRA). Exponential decay curves for GLYRA across insulin concentrations were generated for each individual and suppression of lipolysis was calculated as the insulin concentration needed to half‐maximally suppress GLYRA (GLYRA EC50). Areas under the curve for glycerol (GLYAUC) and insulin (INSAUC) were calculated and their products (INSAUC × GLYAUC) were calculated as an index of insulin suppression of lipolysis.

Results:

The clamp index was highly correlated with GLYRA EC50 (r = 0.862, P < 0.001), as was an OGTT‐derived index (r = 0.720, P < 0.01).

Conclusions:

These findings suggest that the products of the insulin and glycerol AUC from either a clamp or an OGTT are good biomarkers of the antilipolytic action of insulin and are comparable with direct measurement by isotopic tracer methods.  相似文献   

15.
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 μM resveratrol (but not with 62.5 μM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO2 release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol.In adipocytes incubated for 90 min with epinephrine, 10 and 100 μM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 μM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 μM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine.Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.  相似文献   

16.
The effect of different pHs obtained by changing the PCO2 and the effect of PCO2 at constant pH on the lipolysis induced by epinephrine in isolated fat cells have been investigated. An inhibition of activated lipolysis was found in acidosis while in alkalosis no significant change was detected. When the experiments were performed at different PCO2s but at constant pH, the results showed an inhibition of lipolysis by high PCO2 whereas low PCO2 did not affect it. It is concluded that either acidosis or high PCO2 lead to an inhibition of the lipolysis induced by epinephrine in isolated fat cells. As regards alkalosis and low PCO2 it seems likely that the intracellular pH is not affected to the same extent as in alkalosis by high [HCO(-3)] or under the conditions of the present experiments the [H+] needed to alterate lipolysis was not reached.  相似文献   

17.
The effects of omission of Ca2+ and Mg2+ from the incubation medium on three aspects of insulin action in isolated fat cells have been investigated. In the (Ca2+ + Mg2+)-free incubation medium incorporation of L-[14C]leucine into fat cell protein was reduced in the absence of insulin. Insulin stimulated L-[14C]-leucine incorporation only in the presence of added CaCl2 or MgCl2. Incubation of the cells in the (Ca2+ + Mg2+)-free medium reduced but did not abolish the ability of adrenaline to stimulate lipolysis or the ability of insulin to inhibit the adrenaline-stimulated lipolysis. Specific binding of 125I-labelled insulin to the fat cells was reduced in the absence of Ca2+ and Mg2+ but was not abolished, even in the presence of EDTA. Ca2+ was routinely the most effective divalent cation in supporting these aspects of insulin action, but similar responses were obtained with Mg2+, Sr2+ and Ba2+.Since insulin still binds to the cells under conditions in which some of the cellular effects of the hormone are abolished, it is suggested that divalent cations may have a role, either direct or indirect, in the processes linking the insulin-insulin receptor complex to certain effector systems in the cells. It is tentatively suggested that this action occurs at the level of the fat cell plasma membrane.  相似文献   

18.
The effects of ommission of Ca2+ and Mg2+ from the incubation medium on three aspects of insulin action in isolated fat cells have been investigated. In the (Ca2+ + Mg2+)-free incubation medium incorporation of L-[14C]leucine into fat cell protein was reduced in the absence of insulin. Insulin stimulated L-[14C]leucine incorporation only in the presence of added CaCl2 or MgCl2. Incubation of the cells in the (Ca2+ + Mg2+)-free medium reduced but did not abolish the ability of adrenaline to stimulate lipolysis or the ability of insulin to inhibit the adrenaline-stimulated lipolysis. Specific binding of 125I-labelled insulin to the fat cells was reduced in the absence of Ca2+ and Mg2+ but was not abolished, even in the presence of EDTA. Ca2+ was routinely the most effective divalent cation in supporting these aspects of insulin action, but similar responses were obtained with Mg2+, Sr2+ and Ba2+. Since insulin still binds to the cells under conditions in which some of the cellular effects of the hormone are abolished, it is suggested that divalent cations may have a role, either direct or indirect, in the processes linking the insulin-insulin receptor complex to certain effector systems in the cells. It is tentatively suggested that this action occurs at the level of the fat cell plasma membrane.  相似文献   

19.
20.
The effects of an in vivo cortisol-treatment to rats (2 X 2 mg/rat/day, for one week) on insulin plasma levels, insulin binding and antilipolytic activity in rat adipose tissue were investigated. Hyperinsulinemia together with an increase in insulin degradation in the serum of cortisol-treated rats were observed. The adipocytes from cortisol-treated animals showed a statistically significant decrease in insulin binding but no change in receptor numbers [cortisol-treated 103,000 +/- 8,000 (n = 8) receptors/cell and controls 138,000 +/- 15,000 (n = 16) receptors/cell], together with unchanged receptor affinity [ED50: cortisol-treated 3 X 10(-9) M and controls 3.2 X 10(-9) M], and a decreased sensitivity to the antilipolytic effect of insulin. The evidence presented for pre-receptor, receptor and post-receptor insulin defects on the action of cortisol in isolated rat adipocytes could represent a coordinated mechanism by which cortisol exerts "insulin resistance" in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号